Mutual dependence of calcitonin-gene related peptide and acetylcholine release in neuromuscular preparations. 1997

I Kimura, and M Okazaki, and H Nojima
Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani, Japan.

To investigate the mutual dependence of calcitonin gene-related peptide (CGRP) and acetylcholine release, we examined the effect of a cholinesterase inhibitor neostigmine on the release of CGRP-like immunoreactivity in rat phrenic nerve-hemidiaphragm muscle preparation, and conversely, the effect of CGRP on [3H]acetylcholine release from motor nerve terminals loaded with [3H]choline in the same preparations of mice. Release of CGRP-like immunoreactivity was increased by electrical nerve stimulation (train of 40 pulses of 200 micros pulse duration and frequency of 50 Hz applied every 10 s) in the whole preparation but not in the segmental preparation containing the endplate region. Neostigmine (0.1-0.3 microM) enhanced the resting release of CGRP-like immunoreactivity in a concentration-dependent manner, whereas it depressed the nerve-evoked release of CGRP-like immunoreactivity. CGRP (1 microM) added to perfusate decreased nerve-evoked [3H]acetylcholine release. These results suggest that CGRP, which is released by electrical nerve stimulation or a cholinesterase inhibitor in intact skeletal muscles, negatively modulates nerve-evoked acetylcholine release.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

I Kimura, and M Okazaki, and H Nojima
August 2016, Neuroscience letters,
I Kimura, and M Okazaki, and H Nojima
December 1990, The American journal of physiology,
I Kimura, and M Okazaki, and H Nojima
April 1994, Journal of applied physiology (Bethesda, Md. : 1985),
I Kimura, and M Okazaki, and H Nojima
October 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
I Kimura, and M Okazaki, and H Nojima
January 1986, Nature,
I Kimura, and M Okazaki, and H Nojima
February 1997, Naunyn-Schmiedeberg's archives of pharmacology,
I Kimura, and M Okazaki, and H Nojima
July 1989, Brain research,
I Kimura, and M Okazaki, and H Nojima
February 1998, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!