Functional development of the vibrissae somatosensory system of the rat: (14C) 2-deoxyglucose metabolic mapping study. 1997

C C Wu, and M F Gonzalez
Department of Psychology, University of California, San Diego, La Jolla 92093-0109, USA. ns25@sdcc12.ucsd.edu

Functional development of the rat whisker somatosensory system was studied by using the (14C) 2-deoxyglucose (2DG) metabolic mapping technique. Restrained rat pups had their left mystacial vibrissae stroked for 30 minutes and their brains harvested, sectioned, and autoradiographed from the level of the lower medulla to the frontal cortex. Subjects were tested at postnatal days (PNDs) 0-9 and 21. At birth, all subjects exhibited a significant increase of 2DG uptake in the left spinal trigeminal nuclei, the principal trigeminal sensory nucleus, and a portion of the right ventral posteromedial thalamic nucleus. The primary somatosensory cortex exhibited significant 2DG uptake contralateral to stimulation by PND 6, followed by the secondary somatosensory cortex at PND 7. The pattern of 2DG uptake in the somatosensory cortices became more intense and well defined by PND 9. Given that the somatosensory system develops in an orderly fashion from the periphery to higher brain structures, the present results show that brain structures mediating whisker sensory input are not metabolically active until projections from lower somatosensory centers are established. Neurons become responsive to whisker stimulation in the subcortical structures at birth and in the somatosensory cortex a few days later. This cortical activity follows the organization of the upper tier of thalamocortical fibers into a "barrelfield." Moreover, there is a gradual enhancement in functional activity of the vibrissa neurons at different somatosensory nuclei as rats mature. The present study elucidates the time course of functional development in the rat somatosensory system.

UI MeSH Term Description Entries
D008297 Male Males
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D014278 Trigeminal Nuclei Nuclei of the trigeminal nerve situated in the brain stem. They include the nucleus of the spinal trigeminal tract (TRIGEMINAL NUCLEUS, SPINAL), the principal sensory nucleus, the mesencephalic nucleus, and the motor nucleus. Trigeminal Nuclear Complex,Nuclear Complex, Trigeminal,Nuclear Complices, Trigeminal,Nuclei, Trigeminal,Nucleus, Trigeminal,Trigeminal Nuclear Complices,Trigeminal Nucleus
D014738 Vibrissae Stiff hairs projecting from the face around the nose of most mammals, acting as touch receptors. Whiskers,Whisker

Related Publications

C C Wu, and M F Gonzalez
April 1985, The Journal of comparative neurology,
C C Wu, and M F Gonzalez
January 1984, Experimental brain research,
C C Wu, and M F Gonzalez
October 1982, Science (New York, N.Y.),
C C Wu, and M F Gonzalez
January 1985, The Journal of comparative neurology,
C C Wu, and M F Gonzalez
April 1995, The Journal of comparative neurology,
C C Wu, and M F Gonzalez
July 1982, The Journal of comparative neurology,
Copied contents to your clipboard!