The suppressive effect of electrical stimulation on nociceptive responses in the rat. 1997

S F Wang, and Y W Chen, and B C Shyu
School of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Republic of China.

OBJECTIVE The aim of this investigation was to study the effect of electrical stimulation on nociceptive responses within the lumbar levels of the rat spinal cord. METHODS A single high-energy thermal pulse produced by a surgical laser stimulator (5 W, 30 milliseconds) was applied on the plantar surface of the hind paws of male Sprague-Dawley rats. The spinal cord field potential evoked by the laser pulse was used as an indicator of thermosensitive nociceptive responses. Low-intensity single stimulation, high-intensity single stimulation, low-intensity train stimulation, and high-intensity train stimulation were applied on the common peroneal nerve with protected cuff electrodes in different trials. RESULTS Neither low-intensity nor high-intensity single stimulation suppressed field potentials. In contrast, low-intensity train stimulation elicited partial inhibition of field potentials. Furthermore, high-intensity train stimulation elicited biphasic inhibition at a wider range of intervals lasting for 20 seconds. CONCLUSIONS The results demonstrate that two modes of train electrical stimulation can produce two patterns of fast-onset (within milliseconds), short-duration (within 20 seconds) inhibition of field potentials in the spinal cord. These results provide evidence that noxious heat-related impulses are modulated by the presence of specific electrical stimulation. The clinical application of transcutaneous electrical nerve stimulation to block pain is supported.

UI MeSH Term Description Entries
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D008297 Male Males
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010543 Peroneal Nerve The lateral of the two terminal branches of the sciatic nerve. The peroneal (or fibular) nerve provides motor and sensory innervation to parts of the leg and foot. Fibular Nerve,Fibular Nerves,Nerve, Fibular,Nerve, Peroneal,Nerves, Fibular,Nerves, Peroneal,Peroneal Nerves
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004561 Transcutaneous Electric Nerve Stimulation The use of specifically placed small electrodes to deliver electrical impulses across the SKIN to relieve PAIN. It is used less frequently to produce ANESTHESIA. Analgesic Cutaneous Electrostimulation,Electric Stimulation, Transcutaneous,Electroanalgesia,Percutaneous Electric Nerve Stimulation,TENS,Transdermal Electrostimulation,Electrical Stimulation, Transcutaneous,Percutaneous Electrical Nerve Stimulation,Percutaneous Electrical Neuromodulation,Percutaneous Neuromodulation Therapy,Transcutaneous Electrical Nerve Stimulation,Transcutaneous Nerve Stimulation,Cutaneous Electrostimulation, Analgesic,Electrical Neuromodulation, Percutaneous,Electrical Neuromodulations, Percutaneous,Electroanalgesias,Electrostimulation, Analgesic Cutaneous,Electrostimulation, Transdermal,Nerve Stimulation, Transcutaneous,Neuromodulation Therapy, Percutaneous,Neuromodulation, Percutaneous Electrical,Neuromodulations, Percutaneous Electrical,Percutaneous Electrical Neuromodulations,Percutaneous Neuromodulation Therapies,Stimulation, Transcutaneous Electric,Stimulation, Transcutaneous Nerve,Therapy, Percutaneous Neuromodulation,Transcutaneous Electric Stimulation,Transcutaneous Electrical Stimulation
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S F Wang, and Y W Chen, and B C Shyu
November 1975, Psychophysiology,
S F Wang, and Y W Chen, and B C Shyu
March 1962, The Laryngoscope,
S F Wang, and Y W Chen, and B C Shyu
August 1986, Experimental neurology,
S F Wang, and Y W Chen, and B C Shyu
November 2010, Methods and findings in experimental and clinical pharmacology,
S F Wang, and Y W Chen, and B C Shyu
August 2001, Neuroreport,
S F Wang, and Y W Chen, and B C Shyu
January 1992, Zhurnal evoliutsionnoi biokhimii i fiziologii,
Copied contents to your clipboard!