Electrically-evoked dopamine and acetylcholine release from rat striatal slices perfused without magnesium: regulation by glutamate acting on NMDA receptors. 1997

S Jin, and B B Fredholm
Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.

1. Rat striatal slices, preincubated with [3H]-dopamine and [14C]-choline, were continuously superfused and electrically stimulated. Electrically evoked release of [3H]-dopamine and [14C]-acetylcholine (ACh) was not significantly changed by elimination of Mg2+ from superfusion buffer, but the basal release of [3H]-dopamine was doubled. 2. Kynurenic acid (100-800 microM) caused, in the absence but not presence of Mg2+, a concentration-dependent decrease in the evoked release of these two transmitters. The addition of glycine reversed the inhibition of the evoked release of both transmitters caused by kynurenic acid (400 microM) in a concentration-dependent manner. In addition, glycine increased the evoked release of [3H]-dopamine via a site inhibitable by strychnine (1 microM). 3. Another two antagonists at N-methyl-D-aspartate (NMDA) receptors, 2-amino-5-phosphonovaleric acid and dizocilpine, also decreased significantly the evoked release of the two transmitters in a concentration-dependent manner in the absence, but not presence of Mg2+. By contrast, an antagonist of non-NMDA receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) significantly decreased the evoked release of the two transmitters in the presence, but not in the absence of Mg2+. 4. Electrical field stimulation evoked release of endogenous adenosine, and this release tended to be higher in the absence of Mg2+. However, the addition of a selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (200 nM) did not influence the evoked release of the two transmitters, showing that the released adenosine is of little importance in controlling ACh and dopamine release from striatal slices. Non-NMDA receptors may play a similar role when Mg2+ ions are present. 5. The results indicate that NMDA receptors activated in the absence of Mg2+ participate in the electrically-evoked release of [3H]-dopamine and [14C]-ACh from the striatum.

UI MeSH Term Description Entries
D007736 Kynurenic Acid A broad-spectrum excitatory amino acid antagonist used as a research tool. Kynurenate,Acid, Kynurenic
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

S Jin, and B B Fredholm
May 1988, Naunyn-Schmiedeberg's archives of pharmacology,
S Jin, and B B Fredholm
March 1998, Synapse (New York, N.Y.),
S Jin, and B B Fredholm
August 1992, Yakubutsu, seishin, kodo = Japanese journal of psychopharmacology,
S Jin, and B B Fredholm
November 1993, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!