Effective size and F-statistics of subdivided populations. II. Dioecious species. 1997

J Wang
College of Animal Science, Zhejiang Agricultural University, Hangzhou, People's Republic of China. jinliang.wang@ed.ac.uk

For a dioecious diploid population subdivided into an arbitrary number of subpopulations, we have derived recurrence equations for the inbreeding coefficient and coancestries between individuals within and among subpopulations and formulas for effective size and F-statistics. Stable population size and structure, discrete generations, autosomal inheritance, and the island migration model are assumed, and arbitrary distributions of the numbers of male and female progeny per family, different numbers and variable migration rates of males and females are incorporated in our derivation. Some published equations for effective size and F-statistics for a subdivided population are shown to be incorrect because several incorrect probabilities are used in the derivation. A more general equation for effective size is obtained by finding eigenvalue solutions to the recurrence equations for inbreeding coefficient and coancestry in this article, which reduces to the simple and familiar expressions derived by previous authors for the special case of a single unsubdivided population. Our general expressions for F-statistics also reduce to the classical results of WRIGHT's infinite island model and its extensions. It is shown that population structure is important in determining effective size and F-statistics and should be recognized and incorporated into programs for genetic conservation and evolution.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D004171 Diploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X. Diploid,Diploid Cell,Cell, Diploid,Cells, Diploid,Diploid Cells,Diploidies,Diploids
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D001699 Biometry The use of statistical and mathematical methods to analyze biological observations and phenomena. Biometric Analysis,Biometrics,Analyses, Biometric,Analysis, Biometric,Biometric Analyses
D016012 Poisson Distribution A distribution function used to describe the occurrence of rare events or to describe the sampling distribution of isolated counts in a continuum of time or space. Distribution, Poisson
D017343 Genes, Plant The functional hereditary units of PLANTS. Plant Genes,Gene, Plant,Plant Gene
Copied contents to your clipboard!