Downregulation of renin gene expression by interleukin-1. 1997

N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263-0001, USA.

The As4.1 cell line was established from a mouse kidney tumor by transgene-targeted tumorogenesis. These cells express high levels of renin mRNA from their endogenous renin gene and release approximately eightfold-more prorenin than active renin in culture. Levels of renin mRNA in As4.1 cells are decreased in a dose-dependent manner by the addition of physiological concentrations of cytokine interleukin-1 to the media. Stability of renin mRNA and initial rates of release of active renin and prorenin were not significantly altered by interleukin-1. In contrast, transcription initiated from a construct that consisted of 4.1 kilobases of renin 5' flanking sequence fused to a reporter gene (chloramphenicol acetyltransferase) was markedly inhibited by interleukin-1. On the basis of our findings, we conclude that downregulation of renin synthesis caused by interleukin-1 occurs primarily at the level of transcription and that DNA sequence or sequences mediating that effect are positioned within 4.1 kilobases upstream of the renin gene. The physiological relevance of this regulation is related to the events that occur during septic shock, characterized by hypotension, cardiovascular collapse, multiple organ failure, and high mortality. Unexpectedly, hypotension associated with septic shock does not lead to activation of the renin-angiotensin system. The hypotension in septicemia is believed to be mediated by the combined action of many modulators including cytokines, and data presented here suggest direct involvement of interleukin-1 in this process.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007680 Kidney Neoplasms Tumors or cancers of the KIDNEY. Cancer of Kidney,Kidney Cancer,Renal Cancer,Cancer of the Kidney,Neoplasms, Kidney,Renal Neoplasms,Cancer, Kidney,Cancer, Renal,Cancers, Kidney,Cancers, Renal,Kidney Cancers,Kidney Neoplasm,Neoplasm, Kidney,Neoplasm, Renal,Neoplasms, Renal,Renal Cancers,Renal Neoplasm
D007700 Kinetics The rate dynamics in chemical or physical systems.
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
January 1990, Progress in clinical and biological research,
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
October 1998, Pflugers Archiv : European journal of physiology,
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
April 1994, The Journal of biological chemistry,
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
June 1987, Journal of immunology (Baltimore, Md. : 1950),
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
October 1989, Acta endocrinologica,
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
July 1997, Archives of dermatological research,
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
October 1992, Proceedings of the National Academy of Sciences of the United States of America,
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
January 1991, Zhonghua yi xue za zhi,
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
January 1992, Cytokine,
N Petrovic, and C M Kane, and C D Sigmund, and K W Gross
December 1989, The EMBO journal,
Copied contents to your clipboard!