Water distribution and permeability of zebrafish embryos, Brachydanio rerio. 1997

M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
Smithsonian Institution, National Zoological Park, Washington, DC 20008, USA. NZPAH008@SIVM.SI.EDU

Teleost embryos have not been successfully cryopreserved. To formulate successful cryopreservation protocols, the distribution and cellular permeability to water must be understood. In this paper, the zebrafish (Brachydanio rerio) was used as a model for basic studies of the distribution to permeability to water. These embryos are a complex multi-compartmental system composed of two membrane-limited compartments, a large yolk (surrounded by the yolk syncytial layer) and differentiating blastoderm cells (each surrounded by a plasma membrane). Due to the complexity of this system, a variety of techniques, including magnetic resonance microscopy and electron spin resonance, was used to measure the water in these compartments. Cellular water was distributed unequally in each compartment. At the 6-somite stage, the percent water (V/V) was distributed as follows: total in embryo = 74%, total in yolk = 42%, and total in blastoderm = 82%. A one-compartment model was used to analyze kinetic, osmotic shrinkage data and determine a phenomenological water permeability parameter, Lp, assuming intracellular isosmotic compartments of either 40 or 300 mosm. This analysis revealed that the membrane permeability changed (P < 0.05) during development. During the 75% epiboly to 3-somite stage, the mean membrane permeability remained constant (Lp = 0.022 +/- 0.002 micron x min-1atm-1 [mean +/- S.E.M.] assuming isosmotic is 40 mosm or Lp = 0.049 +/- 0.008 micron x min-1atm-1 assuming isosmotic is 300 mosm). However, at the 6-somite stage, Lp increased twofold (Lp = 0.040 +/- 0.004 micron x min-1atm-1 assuming isosmotic is 40 mosm or Lp = 0.100 +/- 0.017 micron x min-1atm-1 assuming isosmotic is 300 mosm). Therefore, the low permeability of the zebrafish embryo coupled with its large size (and consequent low area to volume ratio) led to a very slow osmotic response that should be considered before formulating cryopreservation protocols.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009995 Osmosis Tendency of fluids (e.g., water) to move from the less concentrated to the more concentrated side of a semipermeable membrane. Osmoses
D001756 Blastoderm A layer of cells lining the fluid-filled cavity (blastocele) of a BLASTULA, usually developed from a fertilized insect, reptilian, or avian egg. Blastoderms
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004530 Egg Yolk Cytoplasm stored in an egg that contains nutritional reserves for the developing embryo. It is rich in polysaccharides, lipids, and proteins. Egg Yolks,Yolk, Egg,Yolks, Egg
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra
D015925 Cryopreservation Preservation of cells, tissues, organs, or embryos by freezing. In histological preparations, cryopreservation or cryofixation is used to maintain the existing form, structure, and chemical composition of all the constituent elements of the specimens. Cryofixation,Cryonic Suspension,Cryonic Suspensions,Suspension, Cryonic

Related Publications

M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
August 1998, Cryobiology,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
March 1979, Bulletin of environmental contamination and toxicology,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
January 1994, Cytotechnology,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
September 1993, In vitro cellular & developmental biology. Animal,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
November 1984, Bulletin of environmental contamination and toxicology,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
October 1993, Journal of experimental animal science,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
March 1967, Life sciences,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
April 1992, Molecular marine biology and biotechnology,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
November 1997, Indian journal of experimental biology,
M Hagedorn, and F W Kleinhans, and R Freitas, and J Liu, and E W Hsu, and D E Wildt, and W F Rall
July 1991, Archives of environmental contamination and toxicology,
Copied contents to your clipboard!