Predicting differential antigen-antibody contact regions based on solvent accessibility. 1997

F J Lebeda, and M A Olson
Department of Cell Biology and Biochemistry, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702-5011, USA.

A novel computational approach was examined for predicting epitopes from primary structures of the seven immunologically distinct botulinum neurotoxins (BoNT/A-G) and tetanus toxin (TeTX). An artificial neural network [Rost and Sander (1994), Proteins 20, 216] was used to estimate residue solvent accessibilities in multiple aligned sequences. A similar network trained to predict secondary structures was also used to examine this protein family, whose tertiary fold is presently unknown. The algorithm was validated by showing that it was 80% accurate in determining the secondary structure of avian egg-white lysozyme and that it correctly identified highly solvent-exposed residues that correspond to the major contact regions of lysozyme-antibody cocrystals. When sequences of the heavy (H) chains of TeTX and BoNT/A-G were analyzed, this algorithm predicted that the most highly exposed regions were clustered at the sequentially nonconserved N- and C-termini [Lebeda and Olson (1994), Proteins 20, 293]. The secondary structures and the remaining highly solvent-accessible regions were, in contrast, predicted to be conserved. In experiments reported by others, H-chain fragments that induced immunological protection against BoNT/A overlap with these predicted most highly exposed regions. It is also known that the C-terminal halves of the TeTX and BoNT/A H-chains interfere with holotoxin binding to ectoacceptors on nerve endings. Thus, the present results provide a theoretical framework for predicting the sites that could assist in the development of genetically engineered vaccines and that could interact with neurally located toxin ectoacceptors. Finally, because the most highly solvent-exposed regions were not well conserved, it is hypothesized that nonconserved, potential contact sites partially account for the existence of different dominant binding regions for type-specific neutralizing antibodies.

UI MeSH Term Description Entries
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent
D013744 Tetanus Toxin Protein synthesized by CLOSTRIDIUM TETANI as a single chain of ~150 kDa with 35% sequence identity to BOTULINUM TOXIN that is cleaved to a light and a heavy chain that are linked by a single disulfide bond. Tetanolysin is the hemolytic and tetanospasmin is the neurotoxic principle. The toxin causes disruption of the inhibitory mechanisms of the CNS, thus permitting uncontrolled nervous activity, leading to fatal CONVULSIONS. Clostridial Neurotoxin,Clostridium tetani Toxin,Tetanus Toxins,Neurotoxin, Clostridial,Toxin, Clostridium tetani,Toxin, Tetanus,Toxins, Tetanus
D016571 Neural Networks, Computer A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming. Computational Neural Networks,Connectionist Models,Models, Neural Network,Neural Network Models,Neural Networks (Computer),Perceptrons,Computational Neural Network,Computer Neural Network,Computer Neural Networks,Connectionist Model,Model, Connectionist,Model, Neural Network,Models, Connectionist,Network Model, Neural,Network Models, Neural,Network, Computational Neural,Network, Computer Neural,Network, Neural (Computer),Networks, Computational Neural,Networks, Computer Neural,Networks, Neural (Computer),Neural Network (Computer),Neural Network Model,Neural Network, Computational,Neural Network, Computer,Neural Networks, Computational,Perceptron
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

F J Lebeda, and M A Olson
February 2023, Journal of chemical information and modeling,
F J Lebeda, and M A Olson
August 2020, Molecular systems biology,
F J Lebeda, and M A Olson
May 2006, Journal of proteome research,
F J Lebeda, and M A Olson
January 2001, International journal of biological macromolecules,
F J Lebeda, and M A Olson
August 1998, Biophysical chemistry,
F J Lebeda, and M A Olson
September 1979, Biopolymers,
F J Lebeda, and M A Olson
July 2006, Journal of immunological methods,
F J Lebeda, and M A Olson
February 2019, Scientific reports,
Copied contents to your clipboard!