Thymic epithelial cell culture. 1997

C Röpke
Institute of Medical Anatomy, University of Copenhagen, The Panum Institute, Denmark.

Culture of epithelial cells from the thymus of children and laboratory animals has been used for more than two decades to evaluate both the nature of these cells and their importance in the selection and maturation of functional T cells. Especially by the use of serum-free cultures and by establishment of cell lines from cultured thymic epithelial cells (TEC), it has been possible to obtain basic information on morphology of subpopulations of TEC, including surface determinants of importance for interactions with T-cell precursors, and on the repertoire of cytokines secreted by different types of TEC. The available information, obtained by co-culture of pre-T cells and TEC, on the effects of TEC on the fate of pre-T cells suggests that cultured TEC/TEC lines are able both to secrete needed cytokines for T-cell development, and to deliver signals needed for T-cell selection. In vivo results showing cross-talk between TEC and T cells indicate that more careful evaluation of interactions between well-defined subtypes of cultured TEC and co-cultured subpopulations of pre-T cells (as well as macrophages/dendritic cells) will be of importance in evaluation of the function of the thymus.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018122 B7-1 Antigen A costimulatory ligand membrane glycoprotein that contains a V2 type and C2 IMMUNOGLOBULIN DOMAIN and is expressed by ANTIGEN-PRESENTING CELLS. It binds to CTLA-4 ANTIGEN with high specificity and to CD28 ANTIGEN with low specificity. The interaction of CD80 with CD28 ANTIGEN provides a costimulatory signal to T-LYMPHOCYTES, while its interaction with CTLA-4 ANTIGEN may play a role in inducing PERIPHERAL TOLERANCE. Antigens, CD80,B-Cell Activation Antigen,B7-1 Costimulatory Molecule,CD80 Antigens,Antigen, B7-1,B7-1 Ligand,CD80 Antigen,Antigen, B7 1,B Cell Activation Antigen,B7 1 Antigen,B7 1 Costimulatory Molecule,B7 1 Ligand,Costimulatory Molecule, B7-1,Ligand, B7-1

Related Publications

C Röpke
January 2007, Methods in molecular biology (Clifton, N.J.),
C Röpke
January 1985, Nihon Kyobu Shikkan Gakkai zasshi,
C Röpke
January 2019, Methods in molecular biology (Clifton, N.J.),
C Röpke
January 1996, Methods in molecular medicine,
C Röpke
April 1988, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
C Röpke
January 2013, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!