Dual role of a dileucine motif in insulin receptor endocytosis. 1997

I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
Department of Morphology, University of Geneva, 1211 Geneva, Switzerland.

Two leucines (Leu986 and Leu987) have recently been shown to take part in the control of human insulin receptor (HIR) internalization (Renfrew-Haft, C., Klausner, R. D., and Taylor, S. I. (1994) J. Biol. Chem. 269, 26286-26294). The aim of the present study was to further investigate the exact mechanism of this control process. Constitutive and insulin-induced HIR internalizations were studied biochemically and morphologically in NIH 3T3 cells overexpressing either a double alanine (amino acid residues 986-987) mutant HIR (HIR AA1) or HIR truncated at either amino acid residue 981 (HIR Delta981) or 1000 (HIR Delta1000). Data collected indicate that: (a) the three mutant HIR show a reduced association with microvilli as compared with HIR wild-type; (b) the two receptors containing the dileucine motif (HIR WT and HIR Delta1000) show the highest propensity to associate with clathrin-coated pits, independently of kinase activation; (c) the two receptors lacking the dileucine motif but containing two tyrosine-based motifs, previously described as participating in clathrin-coated pit segregation, associate with these surface domains with a lower affinity than the two others, (d) in the presence of the kinase domain, an unmasking of the tyrosine-based motifs mediated by kinase activation is required. These results indicate that the dileucine motif is not sufficient by itself, but participates in anchoring HIR on microvilli and that another sequence, located downstream from position 1000 is crucial for this event. This dileucine motif also plays a role in HIR segregation in clathrin-coated pits. This latter function is additive with that of the tyrosine-based motifs but the role of the dileucine motif predominates. Eventually, the clathrin-coated pit anchoring function of the dileucine motif is independent of receptor kinase activation in contrast to the tyrosine-based motifs.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D003034 Coated Pits, Cell-Membrane Specialized regions of the cell membrane composed of pits coated with a bristle covering made of the protein CLATHRIN. These pits are the entry route for macromolecules bound by cell surface receptors. The pits are then internalized into the cytoplasm to form the COATED VESICLES. Bristle-Coated Pits,Cell-Membrane Coated Pits,Bristle Coated Pits,Bristle-Coated Pit,Cell Membrane Coated Pits,Cell-Membrane Coated Pit,Coated Pit, Cell-Membrane,Coated Pits, Cell Membrane,Pit, Bristle-Coated,Pit, Cell-Membrane Coated,Pits, Bristle-Coated,Pits, Cell-Membrane Coated
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
October 1999, Molecular pharmacology,
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
February 2005, Neuropharmacology,
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
February 2006, The Journal of biological chemistry,
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
November 2002, The Journal of biological chemistry,
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
July 2005, Journal of neurochemistry,
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
April 2007, Traffic (Copenhagen, Denmark),
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
September 1992, The American journal of the medical sciences,
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
February 2001, The Journal of biological chemistry,
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
June 2003, The Journal of biological chemistry,
I Hamer, and C R Haft, and J P Paccaud, and C Maeder, and S Taylor, and J L Carpentier
March 1994, Cell,
Copied contents to your clipboard!