Glycerol-assisted restorative adjustment of flavoenzyme conformation perturbed by site-directed mutagenesis. 1997

A A Raibekas, and V Massey
Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA.

The replacement of histidine 307 with leucine in pig kidney D-amino acid oxidase perturbs its active site conformation accompanied by dramatic losses in protein-flavin interactions and enzymatic activity. However, the negative effect of this mutation on the holoenzyme structure is essentially eliminated in the presence of glycerol, resulting in up to 50% activity recovery and greater than 16-fold increase in the flavin affinity. Further analysis revealed that glycerol assists in the rearrangement of the protein toward its holoenzyme-like conformation together with reduction in the solvent-accessible protein hydrophobic area as demonstrated by limited proteolysis and use of affinity and hydrophobic probes. A substantial decrease in the protein-flavin interactions was demonstrated at a low temperature, but this reversible process was completely blocked in the presence of 40% glycerol. We suggest that the perturbation of the D-amino acid oxidase active site is due to the nonpolar nature of the mutation whose negative impact on the holoenzyme structure can be overcome by glycerol-induced strengthening of protein internal hydrophobic interactions.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003605 D-Amino-Acid Oxidase dextro-Amino Acid Oxidase,D-Amino Acid Dehydrogenase,Acid Dehydrogenase, D-Amino,Acid Oxidase, dextro-Amino,D Amino Acid Dehydrogenase,D Amino Acid Oxidase,Dehydrogenase, D-Amino Acid,Oxidase, D-Amino-Acid,Oxidase, dextro-Amino Acid,dextro Amino Acid Oxidase
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine

Related Publications

A A Raibekas, and V Massey
December 2014, Archives of biochemistry and biophysics,
A A Raibekas, and V Massey
April 1996, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A A Raibekas, and V Massey
January 2013, Methods in enzymology,
A A Raibekas, and V Massey
January 2011, Methods in molecular biology (Clifton, N.J.),
A A Raibekas, and V Massey
January 2003, Methods in molecular biology (Clifton, N.J.),
A A Raibekas, and V Massey
January 1998, Methods in enzymology,
A A Raibekas, and V Massey
July 1986, The Biochemical journal,
A A Raibekas, and V Massey
January 2003, Methods in molecular biology (Clifton, N.J.),
A A Raibekas, and V Massey
January 1985, Ciba Foundation symposium,
Copied contents to your clipboard!