Potassium current oscillations across the rabbit lens epithelium. 1997

L J Alvarez, and O A Candia, and A C Zamudio
Department of Ophthalmology, Mount Sinai School of Medicine, 100th Street and 5th Avenue, New York, NY 10029, USA.

Rabbit lenses expressing spontaneous oscillations in translens short-circuit current (Isc) are obtained somewhat frequently, with this phenomenon observed in approximately 30% of isolated lenses as described earlier (Exp. Eye Res. 61, 129-140, 1995). Since pharmacological protocols to consistently elicit Isc oscillations were not found, characterizations of the underlying transport processes have been limited to the application of various inhibitors on the spontaneous phenomenon. The present report extends the initial observations by confirming that oscillations are immediately inhibited upon the anterior addition of the Ca2+ channel blocker nifedipine (10 microM), and by demonstrating that other treatments which should affect epithelial Ca2+ homeostasis are also inhibitory (e.g., Bay K 8644 (10 microM), diltiazem (10 microM), EGTA (2 mm), and Ca2+-free media). Furthermore, Isc oscillations are immediately inhibited by the K+ channel blocker, Ba2+, but not by the Na+-K+ pump inhibitor, ouabain. The intracellular Ca2+ mobilizing agents thapsigargin (0.1 microM) or acetylcholine (1 microM) modified but did not permanently inhibit the oscillations, confirming earlier observations. At 50 microM, however, acetylcholine addition was inhibitory, but reversible, for oscillations restarted upon its subsequent removal. In addition, lens oscillations were also characterized under open-circuit conditions with microelectrodes inserted in the superficial cells near the equator of lenses isolated in a divided chamber. The potential difference (PD) across each lens face was recorded, as was the translens PD (PDt), which equals the difference between the PDs across each lens surface. Oscillations in PDt were obtained in 7 of 26 lenses. The oscillations arose only from an oscillation in the PD across the anterior face (PDa). While PDa and PDt oscillated with the same amplitude (approximately 12 mV) and period (approximately 70 sec), the PD across the posterior surface remained stable. During these oscillations the conductance of the anterior surface was maximal at the most positive voltage of the anterior bath with respect to the lens interior (46 mV), whereas, minimal conductance occurred at the least positive PDa (34 mV). Overall, these observations are consistent with the likely presence of voltage-operated Ca2+ channels in parallel with various Ca2+-sensitive K+ channels in the epithelial basolateral membrane. A model to explain the oscillatory pattern across the anterior face while the PD across the posterior face remains unaltered is presented.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004110 Diltiazem A benzothiazepine derivative with vasodilating action due to its antagonism of the actions of CALCIUM ion on membrane functions. Aldizem,CRD-401,Cardil,Cardizem,Dilacor,Dilacor XR,Dilren,Diltiazem Hydrochloride,Diltiazem Malate,Dilzem,Tiazac,CRD 401,CRD401
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

L J Alvarez, and O A Candia, and A C Zamudio
June 1988, Nippon Ganka Gakkai zasshi,
L J Alvarez, and O A Candia, and A C Zamudio
July 1992, The Journal of membrane biology,
L J Alvarez, and O A Candia, and A C Zamudio
November 1986, Federation proceedings,
L J Alvarez, and O A Candia, and A C Zamudio
November 1981, Experimental eye research,
L J Alvarez, and O A Candia, and A C Zamudio
July 1993, The American journal of physiology,
L J Alvarez, and O A Candia, and A C Zamudio
January 1982, The Journal of membrane biology,
L J Alvarez, and O A Candia, and A C Zamudio
February 1989, Acta ophthalmologica,
L J Alvarez, and O A Candia, and A C Zamudio
December 1992, Biochimica et biophysica acta,
L J Alvarez, and O A Candia, and A C Zamudio
November 1971, Nihon ganka kiyo,
L J Alvarez, and O A Candia, and A C Zamudio
January 1982, The Journal of membrane biology,
Copied contents to your clipboard!