KpnAI, a new type I restriction-modification system in Klebsiella pneumoniae. 1997

N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda, CA 92350, USA.

The KpnAI restriction-modification (R-M) system has been identified in Klebsiella pneumoniae strain M5a1. The restriction gene of KpnAI was first cloned into pBR322 using an r-m+ M5a1 derivative and phage SBS for screening. Subsequently, an adjacent DNA fragment showing modification activity was cloned into pUC19. A total of 7.2 kb DNA sequencing data revealed three open reading frames, corresponding to hsdR, hsdM and hsdS genes of type I R-M systems. The predicted hsdR, hsdM and hsdS-coded peptides shared 95%, 98% and 44% identity, respectively, with the corresponding peptides of the recently identified StySBLI system, a prototype of the type ID family. This high homology suggests that KpnAI is also a member of the type ID family. The KpnAI system seems to be the first type I system identified in Klebsiella species.

UI MeSH Term Description Entries
D007711 Klebsiella pneumoniae Gram-negative, non-motile, capsulated, gas-producing rods found widely in nature and associated with urinary and respiratory infections in humans. Bacillus pneumoniae,Bacterium pneumoniae crouposae,Hyalococcus pneumoniae,Klebsiella pneumoniae aerogenes,Klebsiella rhinoscleromatis
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D015265 Site-Specific DNA-Methyltransferase (Adenine-Specific) An enzyme responsible for producing a species-characteristic methylation pattern on adenine residues in a specific short base sequence in the host cell DNA. The enzyme catalyzes the methylation of DNA adenine in the presence of S-adenosyl-L-methionine to form DNA containing 6-methylaminopurine and S-adenosyl-L-homocysteine. EC 2.1.1.72. DNA Modification Methylases (Adenine-Specific),DNA-Adenine Methylases,Modification Methylases (Adenine-Specific),Site-Specific Methyltransferases (Adenine-Specific),DNA Modification Methylases Adenine Specific,Modification Methylases (Adenine Specific),Site Specific Methyltransferases (Adenine Specific),DNA Adenine Methylases,Methylases, DNA-Adenine
D015280 DNA Restriction-Modification Enzymes Systems consisting of two enzymes, a modification methylase and a restriction endonuclease. They are closely related in their specificity and protect the DNA of a given bacterial species. The methylase adds methyl groups to adenine or cytosine residues in the same target sequence that constitutes the restriction enzyme binding site. The methylation renders the target site resistant to restriction, thereby protecting DNA against cleavage. DNA Restriction Modification Enzyme,DNA Restriction-Modification Enzyme,Restriction Modification System,Restriction-Modification System,Restriction-Modification Systems,DNA Restriction Modification Enzymes,Restriction Modification Systems,Enzyme, DNA Restriction-Modification,Enzymes, DNA Restriction-Modification,Modification System, Restriction,Modification Systems, Restriction,Restriction-Modification Enzyme, DNA,Restriction-Modification Enzymes, DNA,System, Restriction Modification,System, Restriction-Modification,Systems, Restriction Modification,Systems, Restriction-Modification
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
December 1995, Gene,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
May 1995, Gene,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
November 1999, Nucleic acids research,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
February 1991, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
March 1978, Journal of bacteriology,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
November 2001, Journal of molecular biology,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
October 2004, Nucleic acids research,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
January 2019, Applied and environmental microbiology,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
January 2000, DNA sequence : the journal of DNA sequencing and mapping,
N S Lee, and O Rutebuka, and T Arakawa, and T A Bickle, and J Ryu
November 2016, Nucleic acids research,
Copied contents to your clipboard!