Angiotensin I converting enzyme gene polymorphism and diabetic nephropathy in type II diabetes. 1997

S Schmidt, and E Ritz
Department of Internal Medicine, Ruperto-Carola University of Heidelberg, Germany.

BACKGROUND The factors leading to diabetic nephropathy (DN) are not completely understood. Besides glycaemic control, genetic predisposition seems to play an important role for the development of DN. Genes of the renin-angiotensin system are potential candidate genes. An insertion/deletion polymorphism in the gene coding for the angiotensin I converting enzyme (ACE) has been extensively examined, but results were conflicting. METHODS We studied 658 patients with type II diabetes (n = 347 without DN, n = 311 with DN). RESULTS No difference was found in genotype distribution or allele frequencies between diabetic patients with and without nephropathy as defined by albumin excretion > or = 30 mg/day, but patients on dialysis had more frequently the DD-genotype. CONCLUSIONS Although we acknowledge certain problems in the design of the study the results in this large cohort suggest that the I/D polymorphism of the ACE gene does not play a major role in the development of DN. They are compatible, however, with a role of the gene in progression.

UI MeSH Term Description Entries
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D003928 Diabetic Nephropathies KIDNEY injuries associated with diabetes mellitus and affecting KIDNEY GLOMERULUS; ARTERIOLES; KIDNEY TUBULES; and the interstitium. Clinical signs include persistent PROTEINURIA, from microalbuminuria progressing to ALBUMINURIA of greater than 300 mg/24 h, leading to reduced GLOMERULAR FILTRATION RATE and END-STAGE RENAL DISEASE. Diabetic Glomerulosclerosis,Glomerulosclerosis, Diabetic,Diabetic Kidney Disease,Diabetic Nephropathy,Intracapillary Glomerulosclerosis,Kimmelstiel-Wilson Disease,Kimmelstiel-Wilson Syndrome,Nodular Glomerulosclerosis,Diabetic Kidney Diseases,Glomerulosclerosis, Nodular,Kidney Disease, Diabetic,Kidney Diseases, Diabetic,Kimmelstiel Wilson Disease,Kimmelstiel Wilson Syndrome,Nephropathies, Diabetic,Nephropathy, Diabetic,Syndrome, Kimmelstiel-Wilson
D005260 Female Females
D005787 Gene Frequency The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION. Allele Frequency,Genetic Equilibrium,Equilibrium, Genetic,Allele Frequencies,Frequencies, Allele,Frequencies, Gene,Frequency, Allele,Frequency, Gene,Gene Frequencies
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S Schmidt, and E Ritz
December 2003, Hunan yi ke da xue xue bao = Hunan yike daxue xuebao = Bulletin of Hunan Medical University,
S Schmidt, and E Ritz
October 2009, Indian journal of nephrology,
S Schmidt, and E Ritz
January 1996, Contributions to nephrology,
S Schmidt, and E Ritz
August 2004, Experimental & molecular medicine,
S Schmidt, and E Ritz
January 1999, Hunan yi ke da xue xue bao = Hunan yike daxue xuebao = Bulletin of Hunan Medical University,
Copied contents to your clipboard!