Identification of essential amino acids in phenylalanine ammonia-lyase by site-directed mutagenesis. 1997

B Langer, and D Röther, and J Rétey
Institute of Organic Chemistry, Department of Biochemistry, University of Karlsruhe, Germany.

The postulated precursor of the prosthetic dehydroalanine of phenylalanine ammonia-lyase (PAL), serine 202, was changed to cysteine by site-directed mutagenesis. After cloning and heterologous expression in Escherichia coli, the gene product was assayed for PAL activity. Mutant S202C showed full catalytic activity, and its kinetic constants and the amount of thiol groups were identical to those of wild-type PAL. It must be concluded that in a posttranslational modification both water and hydrogen sulfide can be eliminated from the amino acid in position 202 to form dehydroalanine. In an attempt to identify further amino acids essential either for the posttranslational modification or for catalysis, arginine 174, glutamine 425, and lysine 499 were changed to isoleucine. Analysis of the heterologously expressed mutated gene products revealed that only the R174I mutant showed a significantly lower Vmax value (1/450) identifying this arginine as important. This finding was supported by treatment of wild-type PAL and mutant R174I with phenylglyoxal and 2,3-butandione. Both react specifically with the guanidino group of arginine. They irreversibly inhibited wild-type PAL but had no influence of the Vmax value of mutant R174I. Preincubation with l-phenylalanine protected wild-type PAL from inhibition by phenylglyoxal indicating that arginine 174 is close to the active site. Incubation with KCN irreversibly abolished the remaining activity of mutant R174I leading to the conclusion that arginine 174 is important in catalysis.

UI MeSH Term Description Entries
D010650 Phenylalanine Ammonia-Lyase An enzyme that catalyzes the deamination of PHENYLALANINE to form trans-cinnamate and ammonia. Phenylalanine-Tyrosine Ammonia-lyase,Ammonia-Lyase, Phenylalanine,Ammonia-lyase, Phenylalanine-Tyrosine,Phenylalanine Ammonia Lyase,Phenylalanine Tyrosine Ammonia lyase
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

B Langer, and D Röther, and J Rétey
September 2004, Organic & biomolecular chemistry,
B Langer, and D Röther, and J Rétey
April 2014, Angewandte Chemie (International ed. in English),
B Langer, and D Röther, and J Rétey
November 2018, International journal of molecular sciences,
B Langer, and D Röther, and J Rétey
September 2014, Biotechnology reports (Amsterdam, Netherlands),
B Langer, and D Röther, and J Rétey
October 1996, The Journal of biological chemistry,
Copied contents to your clipboard!