Growth and differentiation of human dendritic cells from CD34+ progenitors. 1997

P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021, USA.

Human dendritic cells can be generated from bone marrow CD34+ progenitors in the presence of GM-CSF and TNF alpha. The addition of a factor like c-kit-ligand optimizes the expansion of dendritic cells, as well as the other myeloid progeny grown under the same conditions, and facilitates their identification and characterization. In contrast to cord blood, where dendritic cells account for the majority of the class II MHC positive myeloid progeny, bone marrow CD34(+)-derived dendritic cells are less frequent than macrophages. When mature macrophages are depleted from days 5-6 cultures, terminally differentiated CD14+ HLA-DR dendritic cells as well as non-monocyte/macrophage CD14+ HLA-DR+ cells can be distinguished. The latter are post-CFU, bipotential, intermediate precursors that can terminally differentiate into either dendritic cells or macrophages depending on subsequent cytokine exposure. Human CD34+ progenitors isolated from bone marrow, as well as cord and peripheral blood, include CFU-DC that give rise to pure dendritic cell colonies in the combined presence of GM-CSF and TNF alpha. The different sources of CD34+ progenitors are not equivalent, however, with respect to frequency of CFU-DC growth. Cord blood is relatively enriched for dendritic cell progenitors. The developmental relationship of CFU-DC and CFU-GM, to the early developing dendritic cells and the bipotential intermediates observed in suspension culture, is not yet established.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D018952 Antigens, CD34 Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow. CD34 Antigens,CD34 Antigen,Antigen, CD34

Related Publications

P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
January 2016, Methods in molecular biology (Clifton, N.J.),
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
January 1996, Blood,
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
April 2001, European urology,
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
October 2001, International journal of hematology,
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
August 1999, Endocrinology,
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
December 2000, Human gene therapy,
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
June 2002, Immunology and cell biology,
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
August 1999, Cellular immunology,
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
January 2001, Journal of biological regulators and homeostatic agents,
P Szabolcs, and D H Ciocon, and M A Moore, and J W Young
January 1997, The Journal of experimental medicine,
Copied contents to your clipboard!