Comparison of estrogen receptor DNA binding in untreated and acquired antiestrogen-resistant human breast tumors. 1997

S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
Academic Department of Biochemistry, Royal Marsden Hospital and Institute of Cancer Research, London, United Kingdom.

Preliminary studies have suggested that measuring the ability of immunoreactive 67-kDa estrogen receptor (ER) to bind DNA and form in vitro complexes with its cognate estrogen response element (ERE) might serve to identify breast tumors most likely to respond to antiestrogens like tamoxifen. Data from two different surveys of untreated primary breast tumors confirmed that only 67% (74 of 111) of ER-positive tumors express a receptor capable of forming ER-ERE complexes by gel-shift assay, with tumors of lower ER content having significantly reduced ER DNA-binding frequency (56%) relative to those of higher ER content (82%; P = 0.007). In contrast to these untreated tumors, a panel of 41 receptor-positive breast tumors excised after acquiring clinical resistance to tamoxifen during either primary (n = 26) or adjuvant therapy (n = 15) showed a significantly greater ER DNA-binding frequency, with nearly 90% capable of forming ER-ERE complexes (P < 0.02). To assess experimentally whether ER DNA-binding function is altered during the development of antiestrogen resistance, nude mouse MCF-7 tumor xenografts were analyzed before and after the acquisition of in vivo resistance to either tamoxifen or a pure steroidal antiestrogen, ICI 182,780. Tamoxifen-resistant MCF-7 tumors retained full expression of 67-kDa DNA-binding ER, and despite a markedly reduced ER content in the ICI 182,780-treated tumors, the expressed ER in these antiestrogen-resistant tumors exhibited full ability to form ER-ERE complexes. These findings indicate that breast tumors with acquired antiestrogen resistance continue to express ER of normal size and DNA-binding ability and suggest that the failure of antiestrogens to arrest tumor growth during emergence of clinical resistance results from an altered gene-regulatory mechanism(s) other than ER-ERE complex formation.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013629 Tamoxifen One of the SELECTIVE ESTROGEN RECEPTOR MODULATORS with tissue-specific activities. Tamoxifen acts as an anti-estrogen (inhibiting agent) in the mammary tissue, but as an estrogen (stimulating agent) in cholesterol metabolism, bone density, and cell proliferation in the ENDOMETRIUM. ICI-46,474,ICI-46474,ICI-47699,Nolvadex,Novaldex,Soltamox,Tamoxifen Citrate,Tomaxithen,Zitazonium,Citrate, Tamoxifen,ICI 46,474,ICI 46474,ICI 47699,ICI46,474,ICI46474,ICI47699
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
November 1984, Cancer research,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
October 1996, Trends in endocrinology and metabolism: TEM,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
January 1993, Breast cancer research and treatment,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
January 1985, Cancer research,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
May 1986, European journal of cancer & clinical oncology,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
March 1984, Cancer research,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
May 1980, Cancer research,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
September 1991, The Journal of steroid biochemistry and molecular biology,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
December 1997, Archives of pharmacal research,
S R Johnston, and B Lu, and M Dowsett, and X Liang, and M Kaufmann, and G K Scott, and C K Osborne, and C C Benz
March 1981, Journal of steroid biochemistry,
Copied contents to your clipboard!