Three-dimensional structure of the cytoplasmic face of the G protein receptor rhodopsin. 1997

P L Yeagle, and J L Alderfer, and A D Albert
Department of Biochemistry, School of Medicine and Biomedical Sciences, University of Buffalo, New York 14214, USA.

Rhodopsin is a G protein receptor from a many-membered family of membrane receptors. No high-resolution structure exists for any member of this family due to the insolubility of membrane proteins and the difficulty in crystallizing membrane proteins. Two new approaches to the structure of rhodopsin are described that circumvent these limitations: (1) individual solution structures of the four cytoplasmic domains of rhodopsin are fitted with the transmembrane domain; (2) the solution structure of a complex of the four cytoplasmic domains is determined from nuclear magnetic resonance data. The two structures are similar. To test the validity of these structures, specific site-to-site distances measured on intact membrane-bound rhodopsin are compared to the same distances on the structures reported here. Excellent agreement is obtained. Furthermore, the agreement is obtained with distances measured on the activated form of teh receptor and not with distances on the dark-adapted form of rhodopsin. This approach may prove to have general applicability for the determination of the structure for membrane proteins.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

P L Yeagle, and J L Alderfer, and A D Albert
August 2001, Chembiochem : a European journal of chemical biology,
P L Yeagle, and J L Alderfer, and A D Albert
August 2003, Biochemistry,
P L Yeagle, and J L Alderfer, and A D Albert
October 2002, Chembiochem : a European journal of chemical biology,
P L Yeagle, and J L Alderfer, and A D Albert
August 2000, Science (New York, N.Y.),
P L Yeagle, and J L Alderfer, and A D Albert
August 1998, Biochemical Society transactions,
P L Yeagle, and J L Alderfer, and A D Albert
January 2006, Annual review of biochemistry,
P L Yeagle, and J L Alderfer, and A D Albert
January 1999, Biochimica et biophysica acta,
P L Yeagle, and J L Alderfer, and A D Albert
September 2001, Current opinion in drug discovery & development,
P L Yeagle, and J L Alderfer, and A D Albert
January 2000, Vitamins and hormones,
P L Yeagle, and J L Alderfer, and A D Albert
January 1998, Progress in nucleic acid research and molecular biology,
Copied contents to your clipboard!