The hypothalamic-pituitary-adrenal axis in autoimmunity. 1997

M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
Department of Hospital Medicine, Bristol Royal Infirmary, United Kingdom. m.s.harbuz@bris.ac.uk

We have characterized the activation of the HPA axis in the chronic inflammatory stress model of adjuvant-induced arthritis. Alteration in the hypothalamic control mechanism, where CRF is no longer the major corticotrophin-releasing factor, has been noted in a number of other immune-mediated disease models, including experimental allergic encephalomyelitis, eosinophilia myalgia syndrome, systemic lupus erythematosus, and leishmaniasis. These changes occur in both the mouse and the rat, suggesting this may be a common mechanism to chronic immune activation. We have good evidence to suggest that AVP takes over as the major stimulator of the axis. The arthritic rat is unable to mount a response to acute stressors, such as restraint or ip hypertonic saline. However, these animals are able to mount a response to an acute immune challenge. These data provide further evidence for a differential activation of the HPA by acute stress or acute immune stimulation. This presumably reflects an adaptive response to the development of chronic inflammation. We have demonstrated that central neurotransmitter systems are able to influence the severity of peripheral inflammation. In particular we have shown that depletion of serotonin at the time of the development of the inflammatory episode reduces the severity of the inflammation. These findings suggest the possibility of novel therapeutic strategies targeting neurotransmitter systems to alleviate inflammation.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D002908 Chronic Disease Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care (Dictionary of Health Services Management, 2d ed). For epidemiological studies chronic disease often includes HEART DISEASES; STROKE; CANCER; and diabetes (DIABETES MELLITUS, TYPE 2). Chronic Condition,Chronic Illness,Chronically Ill,Chronic Conditions,Chronic Diseases,Chronic Illnesses,Condition, Chronic,Disease, Chronic,Illness, Chronic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001169 Arthritis, Experimental ARTHRITIS that is induced in experimental animals. Immunological methods and infectious agents can be used to develop experimental arthritis models. These methods include injections of stimulators of the immune response, such as an adjuvant (ADJUVANTS, IMMUNOLOGIC) or COLLAGEN. Adjuvant Arthritis,Arthritis, Adjuvant-Induced,Arthritis, Collagen-Induced,Arthritis, Adjuvant,Collagen Arthritis,Arthritides, Collagen,Arthritis, Collagen,Collagen Arthritides,Collagen-Induced Arthritides,Collagen-Induced Arthritis
D001327 Autoimmune Diseases Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides. Autoimmune Disease,Disease, Autoimmune,Diseases, Autoimmune
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic

Related Publications

M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
August 1994, Respiratory medicine,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
November 1983, Clinics in endocrinology and metabolism,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
November 2000, American journal of obstetrics and gynecology,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
February 1989, Endocrine reviews,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
March 1970, British medical journal,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
September 1996, Biological psychiatry,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
January 1987, Advances in biochemical psychopharmacology,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
January 1983, Alcoholism, clinical and experimental research,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
January 2007, Novartis Foundation symposium,
M S Harbuz, and G L Conde, and O Marti, and S L Lightman, and D S Jessop
July 1995, Obesity research,
Copied contents to your clipboard!