In vitro negative selection of viral superantigen-reactive thymocytes by thymic dendritic cells. 1997

I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain.

Intrathymic expression of endogenous mouse mammary tumor virus (MMTV)-encoded superantigens (SAg) induces the clonal deletion of T cells bearing SAg-reactive T-cell receptor (TCR) Vbeta elements. However, the identity of the thymic antigen-presenting cells (APC) involved in the induction of SAg tolerance remains to be defined. We have analyzed the potential of dendritic cells (DC) to mediate the clonal deletion of Mtv-7-reactive TCR alphabeta P14 transgenic thymocytes in an in vitro assay. Our results show that both thymic and splenic DC induced the deletion of TCR transgenic double positive (DP) thymocytes. DC appear to be more efficient than splenic B cells as negatively selecting APC in this experimental system. Interestingly, thymic and splenic DC display a differential ability to induce CD4+ SP thymocyte proliferation. These observations suggest that thymic DC may have an important role in the induction of SAg tolerance in vivo.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
June 1991, Immunology letters,
I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
September 1996, International immunology,
I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
February 2009, International immunology,
I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
February 1998, Science in China. Series C, Life sciences,
I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
October 2017, Nature communications,
I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
January 2009, Immunology and cell biology,
I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
October 2010, PloS one,
I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
February 2018, Journal of immunology (Baltimore, Md. : 1950),
I Ferrero, and F Anjuère, and H R MacDonald, and C Ardavín
June 1994, The Journal of experimental medicine,
Copied contents to your clipboard!