Intestinal 1,25-dihydroxyvitamin D3 binding protein: specificity of binding. 1977

J A Eisman, and H F DeLuca

The binding of metabolites of vitamin D and their analogs to the 3.7S chick intestinal cytosol receptor protein has been specifically studied by competitive binding techniques and polyethylene glycol precipitation of the complex. The structural requirements for the interaction between the vitamin D molecule and the receptor could be assessed without the nuclear chromatin binding step. These measurements have shown that 1,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D2 are equally competitive and are the most active. Of the structural features of the compounds, the 1 alpha-hydroxyl is most important followed by the 25-hydroxyl and the 3 beta-hydroxyl. The addition of a second hydroxyl near carbon 25 markedly reduces binding whether on the 26 carbon or the 24 carbon. A hydroxyl on C-24 could substitute to some degree for the 25-hydroxyl inasmuch as 24-hydroxyvitamin D3 was much more effective than vitamin D3 but less effective than 25-hydroxyvitamin D3. In general the patterns of binding affinities correlated well with the biological activity of the various analogs strongly supporting a physiological role for the 1,25-dihydroxyvitamin D3 binding protein. It also suggests that of the two-step receptor mechanism, the structural specificity is located in the initial interaction of the 1,25-dihydroxyvitamin D3 and the cytosol receptor.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004100 Dihydroxycholecalciferols Cholecalciferols substituted with two hydroxy groups in any position. Dihydroxyvitamins D
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D006887 Hydroxycholecalciferols Hydroxy analogs of vitamin D 3; (CHOLECALCIFEROL); including CALCIFEDIOL; CALCITRIOL; and 24,25-DIHYDROXYVITAMIN D 3. Hydroxyvitamins D,Hydroxycholecalciferol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014808 Vitamin D Deficiency A nutritional condition produced by a deficiency of VITAMIN D in the diet, insufficient production of vitamin D in the skin, inadequate absorption of vitamin D from the diet, or abnormal conversion of vitamin D to its bioactive metabolites. It is manifested clinically as RICKETS in children and OSTEOMALACIA in adults. (From Cecil Textbook of Medicine, 19th ed, p1406) Deficiency, Vitamin D,Deficiencies, Vitamin D,Vitamin D Deficiencies

Related Publications

J A Eisman, and H F DeLuca
June 1977, Biochemical and biophysical research communications,
J A Eisman, and H F DeLuca
January 1985, Biochemical and biophysical research communications,
J A Eisman, and H F DeLuca
March 1977, Archives of biochemistry and biophysics,
J A Eisman, and H F DeLuca
January 1983, Archives of biochemistry and biophysics,
J A Eisman, and H F DeLuca
March 1983, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Copied contents to your clipboard!