X chromosome inactivation is mediated by Xist RNA stabilization. 1997

B Panning, and J Dausman, and R Jaenisch
Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.

Low level Xist expression can be detected from both active X chromosomes (Xa) in female embryonic stem cells prior to X inactivation. After differentiation, Xist is expressed at high levels only from the inactive X chromosome (Xi). Differentiating female cells increase Xist expression from the Xi prior to silencing low level Xist expression from the Xa. The transition from low level to high level expression is regulated by the stabilization of Xist transcripts at the Xi. We suggest that these developmentally modulated changes in Xist expression are regulated by several different mechanisms: factors that stabilize Xist transcripts at the Xi, an activity that blocks this stabilization at the Xa, and a mechanism that silences low level Xist expression from the Xa.

UI MeSH Term Description Entries
D008297 Male Males
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004303 Dosage Compensation, Genetic Genetic mechanisms that allow GENES to be expressed at a similar level irrespective of their GENE DOSAGE. This term is usually used in discussing genes that lie on the SEX CHROMOSOMES. Because the sex chromosomes are only partially homologous, there is a different copy number, i.e., dosage, of these genes in males vs. females. In DROSOPHILA, dosage compensation is accomplished by hypertranscription of genes located on the X CHROMOSOME. In mammals, dosage compensation of X chromosome genes is accomplished by random X CHROMOSOME INACTIVATION of one of the two X chromosomes in the female. Dosage Compensation (Genetics),Gene Dosage Compensation,Hypertranscription, X-Chromosome,X-Chromosome Hypertranscription,Compensation, Dosage (Genetics),Compensation, Gene Dosage,Compensation, Genetic Dosage,Dosage Compensation, Gene,Gene Dosage Compensations,Genetic Dosage Compensation,Genetic Dosage Compensations,Hypertranscription, X Chromosome,X Chromosome Hypertranscription
D005260 Female Females
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell

Related Publications

B Panning, and J Dausman, and R Jaenisch
October 1997, Cell,
B Panning, and J Dausman, and R Jaenisch
December 2019, Open biology,
B Panning, and J Dausman, and R Jaenisch
January 2002, Annual review of genetics,
B Panning, and J Dausman, and R Jaenisch
May 1998, Molecular and cellular endocrinology,
B Panning, and J Dausman, and R Jaenisch
November 1996, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
B Panning, and J Dausman, and R Jaenisch
January 2014, Current biology : CB,
B Panning, and J Dausman, and R Jaenisch
July 2012, Nature,
B Panning, and J Dausman, and R Jaenisch
October 2015, Nature communications,
B Panning, and J Dausman, and R Jaenisch
December 2025, Nature cell biology,
B Panning, and J Dausman, and R Jaenisch
July 2002, Trends in genetics : TIG,
Copied contents to your clipboard!