Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. 1997

R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
Department of Anatomy, School of Medicine, University of Minnesota, Duluth, USA.

Precise localization of glucose transport proteins in the brain has proved difficult, especially at the ultrastructural level. This has limited further insights into their cellular specificity, subcellular distribution, and function. In the present study, preembedding ultrastructural immunocytochemistry was used to localize the major brain glucose transporters, GLUTs 1 and 3, in vibratome sections of rat brain. Our results support the view that, besides being present in endothelial cells of central nervous system (CNS) blood vessels, GLUT 1 is present in astrocytes. GLUT 1 was detected in astrocytic end feet around blood vessels, and in astrocytic cell bodies and processes in both gray and white matter. GLUT 3, the neuronal glucose transporter, was located primarily in pre- and postsynaptic nerve endings and in small neuronal processes. This study: (1) affirms that GLUT 3 is neuron-specific, (2) shows that GLUT 1 is not normally expressed in detectable quantities by neurons, (3) suggests that glucose is readily available for synaptic energy metabolism based on the high concentration of GLUT 3 in membranes of synaptic terminals, and (4) demonstrates significant intracellular and mitochondrial localization of glucose transport proteins.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Related Publications

R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
August 1996, The Biochemical journal,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
January 1997, Annali dell'Istituto superiore di sanita,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
December 2011, Journal of neuroscience research,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
March 2022, Journal of diabetes investigation,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
April 2008, Histochemistry and cell biology,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
October 1994, The American journal of physiology,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
May 1999, Journal of molecular and cellular cardiology,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
February 2000, Tissue & cell,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
November 2018, Nature chemistry,
R L Leino, and D Z Gerhart, and A M van Bueren, and A L McCall, and L R Drewes
September 2008, Journal of experimental & clinical cancer research : CR,
Copied contents to your clipboard!