Light and electron microscopic demonstration of mGluR5 metabotropic glutamate receptor immunoreactive neuronal elements in the rat cerebellar cortex. 1997

L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
Department of Anatomy, Semmelweis University Medical School, Budapest, Hungary.

The cellular and subcellular localization of the mGluR5 metabotropic glutamate receptor subtype was studied in the rat cerebellar cortex, by using the preembedding immunoperoxidase and immunogold techniques. Light microscopic observations revealed an abundant, intense labeling of neurons in the granular layer as well as in the molecular layer. Lugaro and Golgi cells exhibited an intense mGluR5 immunoreactivity, while only a fraction of the neurons in the molecular layer were found to be mGluR5 immunopositive. In addition to a dense plexus of immunoreactive dendrites in the molecular layer of the cerebellar cortex, the mGluR5 immunopositive Golgi cell dendrites resembling axons at the light microscopic level were also labeled in the granular layer. At the ultrastructural level, mGluR5 immunoreactivity was present in neuronal elements postsynaptic to axon terminals of different morphology. By using a pre-embedding immunogold method, it was found that mGluR5 immunoreactivity is accumulated at the plasma membranes extrasynaptically as well as at the periphery of the postsynaptic specializations, mainly of the parallel fiber synaptic contacts. These findings provide morphological evidence that mGluR5 is expressed by a population of neurons in the cerebellar cortex and can synaptically be activated via the parallel fiber system.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018094 Receptors, Metabotropic Glutamate Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action. Glutamate Receptors, Metabotropic,Metabotropic Glutamate Receptors,Receptors, Glutamate, Metabotropic,Metabotropic Glutamate Receptor,Glutamate Receptor, Metabotropic,Receptor, Metabotropic Glutamate

Related Publications

L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
February 1998, Histochemistry and cell biology,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
April 1996, Neuroscience letters,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
July 1999, The Journal of comparative neurology,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
May 1995, The Journal of comparative neurology,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
May 1997, The Journal of pharmacology and experimental therapeutics,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
November 1993, Neuroscience letters,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
January 1986, Acta morphologica Hungarica,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
February 1986, Journal of neurocytology,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
January 1998, Molecular and chemical neuropathology,
L Négyessy, and Z Vidnyánszky, and R Kuhn, and T Knöpfel, and T J Görcs, and J Hámori
July 1994, Histochemistry,
Copied contents to your clipboard!