Phylogenetic relationships among hypotrichous ciliates determined with the macronuclear gene encoding the large, catalytic subunit of DNA polymerase alpha. 1997

D C Hoffman, and D M Prescott
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Campus Box 347, Boulder, CO 80309-0347, USA.

The complete macronuclear DNA polymerase alpha gene, previously sequenced in Oxytricha nova, has been cloned from a genomic macronuclear library and sequenced for the hypotrich O. trifallax. Macronuclear DNA clones of DNA polymerase alpha encoding approximately 1000 amino acids, or approximately two-thirds of the open reading frame, have been obtained by PCR and sequenced for Halteria grandinella, Holosticha species, Paraurostyla viridis, Pleurotricha lanceolata, Stylonychia lemnae Teller, Sty. mytilus, Uroleptus gallina, and Urostyla grandis. Phylogenetic relationships inferred from DNA polymerase alpha amino acid sequences have been used to clarify taxonomic relationships previously determined by morphology of the cell cortex. Hypotrich phylogenies based on DNA polymerase alpha amino acid sequences are incongruent with morphological and other molecular phylogenies. Based upon these data, we assert that, contrary to morphological data, O. nova and O. trifallax are different species, and we propose that the oligotrich Halteria grandinella be reclassified as a hypotrich. This work also extends the available data base of eukaryotic DNA polymerase alpha sequences, and suggests new amino acid sequence targets for mutagenesis experiments to continue the functional dissection of DNA pol alpha biochemistry at the molecular level.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D016810 Hypotrichida An order of ciliate protozoa. Characteristics include a dorsoventrally flattened, highly mobile body with a unique cursorial type of locomotion. Hypotrichidas

Related Publications

D C Hoffman, and D M Prescott
January 1992, The Journal of protozoology,
D C Hoffman, and D M Prescott
February 1975, Proceedings of the National Academy of Sciences of the United States of America,
D C Hoffman, and D M Prescott
December 1998, Biochemical and biophysical research communications,
D C Hoffman, and D M Prescott
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
D C Hoffman, and D M Prescott
September 1983, Molecular and cellular biology,
D C Hoffman, and D M Prescott
May 1999, Annals of the New York Academy of Sciences,
D C Hoffman, and D M Prescott
March 1990, Journal of molecular evolution,
D C Hoffman, and D M Prescott
December 1985, The Journal of biological chemistry,
D C Hoffman, and D M Prescott
September 1993, The International journal of developmental biology,
Copied contents to your clipboard!