Distribution of alpha1A adrenergic receptor mRNA in the rat brain visualized by in situ hybridization. 1997

A V Domyancic, and D A Morilak
Department of Pharmacology, University of Texas Health Science Center at San Antonio, 78284-7764, USA.

Norepinephrine has been implicated in a number of physiological, behavioral, and cellular modulatory processes in the brain, and many of these modulatory effects are attributable to alpha1 adrenergic receptors. At least three alpha1 receptor subtypes have been identified by molecular criteria, designated alpha1A, alpha1B, and beta1D. The distributions of alpha1B and alpha1D receptor mRNA expression in rat brain have been described previously, but the cDNA for the rat alpha1A receptor has only recently been cloned and characterized. In the present study, we used a radiolabelled riboprobe derived from the rat alpha1A receptor cDNA to describe the distribution of alpha1A message expression in the rat brain. The highest levels of alpha1A adrenergic receptor mRNA expression were seen in the olfactory bulb, tenia tectae, horizontal diagonal band/magnocellular preoptic area, zona incerta, ventromedial hypothalamus, lateral mammillary nuclei, ventral dentate gyrus, piriform cortex, medial and cortical amygdala, magnocellular red nuclei, pontine nuclei, superior and lateral vestibular nuclei, brainstem reticular nuclei, and several cranial nerve motor nuclei. Dual in situ hybridization combining a radioactive riboprobe for choline acetyltransferase mRNA with a digoxigenin-labeled alpha1A riboprobe in the fifth and seventh cranial nerve motor nuclei showed that the alpha1A mRNA is expressed in cholinergic motor neurons. Prominent alpha1A hybridization signal was also seen in the neocortex, claustrum, lateral amygdala, ventral cochlear nucleus, raphe magnus, and in the ventral horn of thoracic spinal cord. This overall pattern of expression, considered in comparison with that previously described for the other alpha1 adrenergic receptor subtypes, may shed light on the different roles of the alpha1 receptors in mediating the neuromodulatory effects of norepinephrine in processes such as arousal, neuroendocrine control, sensorimotor regulation, and the stress response.

UI MeSH Term Description Entries
D008297 Male Males
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013462 Sulfur Radioisotopes Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes. Radioisotopes, Sulfur

Related Publications

A V Domyancic, and D A Morilak
January 2000, Methods in molecular biology (Clifton, N.J.),
A V Domyancic, and D A Morilak
December 1990, Endocrinology,
A V Domyancic, and D A Morilak
August 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A V Domyancic, and D A Morilak
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
A V Domyancic, and D A Morilak
December 1996, Brain research. Molecular brain research,
A V Domyancic, and D A Morilak
November 1993, Neuroscience letters,
A V Domyancic, and D A Morilak
June 1994, Neurochemical research,
A V Domyancic, and D A Morilak
April 1990, The Journal of comparative neurology,
Copied contents to your clipboard!