Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin. 1997

V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
Department of Dermatology, Charité, Humboldt-Universität zu Berlin, Germany.

The innervation of normal, mature mammalian skin is widely thought to be constant. However, the extensive skin remodeling accompanying the transformation of hair follicles from resting stage through growth and regression back to resting (telogen-anagen-catagen-telogen) may also be associated with alteration of skin innervation. We, therefore, have investigated the innervation of the back skin of adolescent C57BL/6 mice at various stages of the depilation-induced hair cycle. By using antisera against neuronal (protein gene product 9.5 [PGP 9.5], neurofilament 150) and Schwann cell (S-100, myelin basic protein) markers, as well as against neural cell adhesion molecule (NCAM) and growth-associated protein-43 (GAP-43), we found a dramatic increase of single fibers within the dermis and subcutis during early anagen. This was paralleled by an increase in the number of anastomoses between the cutaneous nerve plexuses and by distinct changes in the nerve fiber supply of anagen vs. telogen hair follicles. The follicular isthmus, including the bulge, the seat of epithelial follicle stem cells, was found to be the most densely innervated skin area. Here, a defined subpopulation of nerve fibers increased in number during anagen and declined during catagen, accompanied by dynamic alterations in the expression of NCAM and GAP-43. Thus, our study provides evidence for a surprising degree of plasticity of murine skin innervation. Because hair cycle-associated tissue remodeling evidently is associated with tightly regulated sprouting and regression of nerve fibers, hair cycle-dependent alterations in murine skin and hair follicle innervation offer an intriguing model for studying the controlled rearrangement of neuronal networks in peripheral tissues under physiological conditions.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009418 S100 Proteins A family of highly acidic calcium-binding proteins found in large concentration in the brain and believed to be glial in origin. They are also found in other organs in the body. They have in common the EF-hand motif (EF HAND MOTIFS) found on a number of calcium binding proteins. The name of this family derives from the property of being soluble in a 100% saturated ammonium sulfate solution. Antigen S 100,Nerve Tissue Protein S 100,S100 Protein,S-100 Protein,S100 Protein Family,Protein, S100,S 100 Protein
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D005260 Female Females

Related Publications

V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
December 1999, The Journal of investigative dermatology,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
February 2001, The Journal of investigative dermatology,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
January 1995, Archives of dermatological research,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
June 2002, The Journal of comparative neurology,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
March 2008, Experimental dermatology,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
October 1998, The Journal of investigative dermatology,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
May 2003, The American journal of pathology,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
July 2014, Experimental dermatology,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
August 1997, International journal of dermatology,
V A Botchkarev, and S Eichmüller, and O Johansson, and R Paus
January 2019, Molecular medicine reports,
Copied contents to your clipboard!