Inhibition by protein kinase C of the 86Rb+ efflux and vasorelaxation induced by P1075, a K(ATP) channel opener, in rat isolated aorta. 1997

C Linde, and C Löffler, and U Quast
Department of Pharmacology, Medical Faculty, University of Tübingen, Germany.

In rat aortic rings, P1075, an opener of ATP-dependent potassium channels (K(ATP) channels), produces relaxation and 86Rb+ efflux from preloaded tissues; the increase in 86Rb+ efflux qualitatively reflects K(ATP) channel opening. In this study we have investigated the effects of protein kinase C modulation on the 86Rb+ efflux stimulating, the vasorelaxant and the binding properties of P1075. Phorbol 12,13-dibutyrate (PDBu), a direct activator of protein kinase C, inhibited the 86Rb+ efflux produced by P1075 with an IC50 value of 20+/-2 nM. Phorbol 12-myristate 13-acetate (PMA), another stimulator of protein kinase C, was 150 times weaker in this respect whereas 4alpha-PDBu, the inactive stereoisomer of PDBu, was ineffective. Staurosporine (300 nM), an inhibitor of protein kinase C, induced a small but significant increase of P1075-induced tracer efflux and partially reversed the inhibitory effect of PDBu on P1075-stimulated tracer efflux. The vasorelaxant effect of P1075 was inhibited only to a moderate degree by PDBu at concentrations which inhibited P1075-induced 86Rb+ efflux to >90%; however, in the presence of PDBu, the relaxation kinetics of P1075 were increasingly slowed. The vasorelaxant effect of P1075 in the presence of PDBu was still sensitive to inhibition by glibenclamide (100 nM), the standard inhibitor of the K(ATP) channel openers. Specific binding of [3H]-P1075 to rat aortic rings was unaffected by PDBu and PMA even in the micromolar concentration range. The data show that stimulation of protein kinase C inhibits the K+ channel opening effect of P1075 in rat aorta and suggest that protein kinase C may exert a weak tonic inhibition on the K(ATP) channels in this vessel under quasiphysiological conditions. At concentrations of PDBu which essentially abolished P1075-induced tracer efflux, the glibenclamide-sensitive vasorelaxant effect of P1075 was slowed down but not prevented; this supports earlier suggestions that K+ channel openers are also able to relax smooth muscle cells by a mechanism independent of K(ATP) channel opening.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.

Related Publications

C Linde, and C Löffler, and U Quast
June 1995, British journal of pharmacology,
C Linde, and C Löffler, and U Quast
February 1994, Journal of cardiovascular pharmacology,
C Linde, and C Löffler, and U Quast
February 1999, European journal of pharmacology,
C Linde, and C Löffler, and U Quast
February 1999, European journal of pharmacology,
C Linde, and C Löffler, and U Quast
October 1996, Naunyn-Schmiedeberg's archives of pharmacology,
C Linde, and C Löffler, and U Quast
August 1997, Naunyn-Schmiedeberg's archives of pharmacology,
C Linde, and C Löffler, and U Quast
May 1995, Research communications in molecular pathology and pharmacology,
Copied contents to your clipboard!