Local regulation of oviductal blood flow. 1996

A García-Pascual, and A Labadía, and D Triguero, and G Costa
Department of Physiology, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.

1. Blood flow to the oviduct is implicated in the genesis and maintenance of oviductal fluid, in this way contributing to the creation of an adequate medium for ovum/embryo physiology. Therefore, factors controlling the tone of the vessels supplying the oviduct would be expected to affect its luminal environment. In addition, cyclic changes in oviductal blood flow have been suggested to have mechanical functions in the transport of the ovum/embryo. 2. The vascular supply to the oviduct has a prominent adrenergic vasomotor control. A dense adrenergic innervation, together with the presence of a predominant population of alpha(1)-adrenoceptors, provides a contractile regulatory mechanism of oviductal blood flow. No evidence is available on the presence of beta-adrenoceptors. The scanty cholinergic innervation of mammalian oviduct is mainly confined to the vessels, where acetylcholine (ACh) has a vasodilatory effect by releasing endothelium-derived relaxing factors. 3. The presence of nerves containing neuropeptides has been shown in the oviduct. Specifically, a high density of neuropeptide Y- and vasointestinal peptide-containing nerve fibers has been found in relation to blood vessels, but their role in the neutral control of the oviduct blood flow remains to be established. To date, it is not known whether or not oviductal blood vessels receive perivascular nitrergic nerves. 4. Relaxing and contracting factors derived from endothelium also seem to have a modulatory role on oviductal vascular tone. Neurotransmitters or autacoids, such as ACh and histamine, acting on endothelial receptors, release nitric oxide (NO), which relaxes oviductal arteries through guanylyl cyclase activation and accumulation of cyclic GMP. In addition, the release of an endothelium-derived hyperpolarizing factor (EDHF), distinct from NO, by ACh has been shown in oviductal arteries. It acts through the opening of low-conductance Ca(2+)-activated K+ channels leading to hyperpolarization and relaxation. Furthermore, potent and long-lasting contractions induced by the endothelium-derived contractile factor, endothelin (ET), points to its role in the long-term regulation of oviductal vascular tone. 5. A particularly high density of 5-hydroxytryptamine (5-HT) and histamine, present in mast cells clustered in the vicinity of blood vessels, has been described in the oviduct. It is known that histamine elicits a relaxation of oviductal arteries that is partially endothelium-dependent and mediated by the activation of H1-receptors. The implication of histamine in both the increase in blood flow and edema around ovulation, as well as the existence of a functional antagonism between histamine and 5-HT in the regulation of oviductal blood flow, await further investigation. 6. Other factors, such as relaxing and contracting cyclooxygenase-derived products, may also participate in the modulation of blood flow to the oviduct. 7. An overall endocrine regulation of the oviductal vascular supply exists, acting by both direct effects on smooth muscle and modulation of neural and autocrine factors. This control enables cyclic changes in blood flow to the oviduct that are tightly coupled to the reproductive functions of the tube.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D005187 Fallopian Tubes A pair of highly specialized canals extending from the UTERUS to its corresponding OVARY. They provide the means for OVUM transport from the ovaries and they are the site of the ovum's final maturation and FERTILIZATION. The fallopian tube consists of an interstitium, an isthmus, an ampulla, an infundibulum, and fimbriae. Its wall consists of three layers: serous, muscular, and an internal mucosal layer lined with both ciliated and secretory cells. Oviducts, Mammalian,Salpinges, Uterine,Salpinx, Uterine,Uterine Salpinges,Uterine Salpinx,Fallopian Tube,Uterine Tubes,Mammalian Oviduct,Mammalian Oviducts,Oviduct, Mammalian,Tube, Fallopian,Tube, Uterine,Tubes, Fallopian,Tubes, Uterine,Uterine Tube
D005260 Female Females
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A García-Pascual, and A Labadía, and D Triguero, and G Costa
January 1984, Advances in experimental medicine and biology,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
January 1984, Advances in experimental medicine and biology,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
January 1981, Progress in cardiovascular diseases,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
January 1980, Acta chirurgica Scandinavica. Supplementum,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
January 1968, Federation proceedings,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
February 1963, Circulation research,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
August 1964, Circulation research,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
December 1984, The Journal of investigative dermatology,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
July 1975, Bio Systems,
A García-Pascual, and A Labadía, and D Triguero, and G Costa
March 2014, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!