Evidence for collateral projections to the retrosplenial granular cortex and thalamic reticular nucleus from glutamate and/or aspartate-containing neurons of the anterior thalamic nuclei in the rat. 1997

A Gonzalo-Ruiz, and L Morte, and A R Lieberman
Department of Anatomy, School of Physiotherapy, Valladolid University, Soria, Spain.

Small, stereotaxically guided injections of true blue (TB) were made into the retrosplenial granular cortex (RSg) and of diamidino yellow (DY) into the dorsal portion of the rostral pole of the thalamic reticular nucleus (TRN) in 16 adult rats to determine whether axons projecting from the anterior thalamic nuclear complex (ATN) to the TRN are branches of axons also projecting to the RSg. Following injections of the fluorescent dyes, serial coronal sections of the brain revealed single retrogradely labelled, and large numbers of double retrogradely labelled neuronal cell bodies in the ipsilateral anteroventral and anterodorsal nuclei and smaller numbers in the anteromedial nucleus of the ATN complex. In a second series of six adult rats with similar double injections of TB and DY, two sections in three were immunoreacted, one with antiserum against glutamate and one with antiserum against aspartate, using indirect immunofluorescence with rhodamine to detect reactive cells. The great majority of both single and double retrogradely labelled cell bodies were also immunoreactive for aspartate or glutamate. In addition, a moderate to small number of non-immunolabelled neurons projecting to the TRN and/or to the RSg were also found in all three nuclei of the ATN complex. These results are compatible with the possibility that large numbers of neurons in the ATN send axonal branches to both the RSg and the TRN, and that many such neurons use glutamate and/or aspartate as transmitters. The findings also suggest that the projections from the ATN might be heterogeneous with respect to transmitter phenotype.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000578 Amidines Derivatives of oxoacids RnE(
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001572 Benzofurans Compounds that contain a BENZENE ring fused to a furan ring. Coumarones,Diphenylbenzofuran

Related Publications

A Gonzalo-Ruiz, and L Morte, and A R Lieberman
October 1998, The European journal of neuroscience,
A Gonzalo-Ruiz, and L Morte, and A R Lieberman
January 1995, Brain research bulletin,
A Gonzalo-Ruiz, and L Morte, and A R Lieberman
March 2022, European journal of histochemistry : EJH,
A Gonzalo-Ruiz, and L Morte, and A R Lieberman
December 1986, The Journal of comparative neurology,
A Gonzalo-Ruiz, and L Morte, and A R Lieberman
October 1995, Journal of chemical neuroanatomy,
A Gonzalo-Ruiz, and L Morte, and A R Lieberman
September 2011, Visual neuroscience,
A Gonzalo-Ruiz, and L Morte, and A R Lieberman
November 2022, The European journal of neuroscience,
Copied contents to your clipboard!