Co-duplication of a variant surface glycoprotein gene and its promoter to an expression site in African trypanosomes. 1997

K S Kim, and J E Donelson
Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA.

Activation of the metacyclic variant antigen type 7 (MVAT7) variant surface glycoprotein (VSG) gene in bloodstream Trypanosoma brucei rhodesiense involves a duplicative transposition of the gene. The DNA transposition unit extends from a site approximately 3.0 kilobases upstream of the VSG gene through the coding region and includes a 73-base pair sequence that possesses promoter activity in transient transfections. This MVAT7 promoter has 80% identity to a previously characterized promoter for the MVAT4 VSG gene. Nuclear run-on assays demonstrate that the MVAT7 promoter is active in MVAT7 bloodstream organisms and that its transcript is synthesized by an RNA polymerase resistant to alpha-amanitin, consistent with previously published reports regarding VSG gene transcription. The transcription start site was identified by primer extension studies and a modified rapid amplification of cDNA ends protocol. Selective mutational analysis of the MVAT7 promoter showed that two conserved trinucleotide regions are important for full promoter function. This study demonstrates that the MVAT7 VSG gene is co-duplicated with its promoter and transcribed into a monocistronic precursor RNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000953 Antigens, Protozoan Any part or derivative of any protozoan that elicits immunity; malaria (Plasmodium) and trypanosome antigens are presently the most frequently encountered. Protozoan Antigens
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014643 Variant Surface Glycoproteins, Trypanosoma Glycoproteins attached to the surface coat of the trypanosome. Many of these glycoproteins show amino acid sequence diversity expressed as antigenic variations. This continuous development of antigenically distinct variants in the course of infection ensures that some trypanosomes always survive the development of immune response to propagate the infection. Surface Variant Glycoproteins, Trypanosoma,Trypanosoma Variant Surface Coat Glycoproteins,SSP-4,VSG 117,VSG 118,VSG 221
D016054 DNA, Protozoan Deoxyribonucleic acid that makes up the genetic material of protozoa. Protozoan DNA
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D016833 Trypanosoma brucei rhodesiense A hemoflagellate subspecies of parasitic protozoa that causes Rhodesian sleeping sickness in humans. It is carried by Glossina pallidipes, G. morsitans and occasionally other species of game-attacking tsetse flies. Trypanosoma rhodesiense,Trypanosoma brucei rhodesienses,Trypanosoma rhodesienses,brucei rhodesiense, Trypanosoma,brucei rhodesienses, Trypanosoma,rhodesienses, Trypanosoma,rhodesienses, Trypanosoma brucei

Related Publications

K S Kim, and J E Donelson
January 2022, Trends in parasitology,
K S Kim, and J E Donelson
December 2018, BioEssays : news and reviews in molecular, cellular and developmental biology,
K S Kim, and J E Donelson
November 2005, Biochemical Society transactions,
Copied contents to your clipboard!