Molecular divergence of lysozymes and alpha-lactalbumin. 1997

P K Qasba, and S Kumar
Structural Glycobiology Section, National Cancer Institute, N.I.H., Frederick, MD 21702-1201, USA. qasba@helix.nih.gov

The vast number of proteins that sustain the currently living organisms have been generated from a relatively small number of ancestral genes that has involved a variety of processes. Lysozyme is an ancient protein whose origin goes back an estimated 400 to 600 million years. This protein was originally a bacteriolytic defensive agent and has been adapted to serve a digestive function on at least two occasions, separated by nearly 40 million years. The origins of the related goose type and T4 phage lysozyme that are distinct from the more common C type are obscure. They share no discernable amino acid sequence identity and yet they possess common secondary and tertiary structures. Lysozyme C gene also gave rise, after gene duplication 300 to 400 million years ago, to a gene that currently codes for alpha-lactalbumin, a protein expressed only in the lactating mammary gland of all but a few species of mammals. It is required for the synthesis of lactose, the sugar secreted in milk. alpha-Lactalbumin shares only 40% identity in amino acid sequence with lysozyme C, but it has a closer spatial structure and gene organization. Although structurally similar, functionally they are quite distinct. Specific amino acid substitutions in alpha-lactalbumin account for the loss of the enzyme activity of lysozyme and the acquisition of the features necessary for its role in lactose synthesis. Evolutionary implications are as yet unclear but are being unraveled in many laboratories.

UI MeSH Term Description Entries
D007768 Lactalbumin A major protein fraction of milk obtained from the WHEY. alpha-Lactalbumin,alpha-Lactalbumin A,alpha-Lactalbumin B,alpha-Lactalbumin C,alpha Lactalbumin,alpha Lactalbumin A,alpha Lactalbumin B,alpha Lactalbumin C
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic

Related Publications

P K Qasba, and S Kumar
January 1996, EXS,
P K Qasba, and S Kumar
January 1967, Biochimica et biophysica acta,
P K Qasba, and S Kumar
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
P K Qasba, and S Kumar
August 1999, Nihon rinsho. Japanese journal of clinical medicine,
P K Qasba, and S Kumar
January 1989, Critical reviews in biochemistry and molecular biology,
P K Qasba, and S Kumar
February 1987, Journal of biochemistry,
P K Qasba, and S Kumar
January 1979, Journal of molecular biology,
Copied contents to your clipboard!