Experimental evidence for dynamic compartmentation of ADP at the mitochondrial periphery: coupling of mitochondrial adenylate kinase and mitochondrial hexokinase with oxidative phosphorylation under conditions mimicking the intracellular colloid osmotic pressure. 1997

F D Laterveer, and K Nicolay, and F N Gellerich
Department of in vivo NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands.

Dextran M20 was added to isolated rat liver mitochondria to mimic cytosolic macromolecules. Under these conditions, the morphological changes in the mitochondrial periphery that occur upon isolation of the organelle are restored, i.e. the volume of the intermembrane space decreases and the contact site frequency increases. The ADP routing from mitochondrial kinases at various locations was investigated by using the activities of oxidative phosphorylation and externally added pyruvate kinase as sensors for ADP transport into the matrix and extramitochondrial compartment, respectively. The studies reveal that a significant fraction of the ADP generated by either adenylate kinase in the intermembrane space or by outer membrane bound hexokinase isozyme I, is not accessible to extramitochondrial pyruvate kinase. Quantitative information on the ADP compartmentation in rat liver mitochondria was obtained by comparing the ADP supply from mitochondrial kinases to oxidative phosphorylation with that of non-bound, extramitochondrially located kinases. This approach allowed us to estimate the ADP diffusion gradients which were present across the outer membrane and between the compartment formed by bound hexokinase and the extramitochondrial compartment. In the presence of 10% dextran M20 these ADP gradients amounted to approximately 12 microM. The possible role of mitochondrial kinases in ADP transport into mitochondria in vivo is discussed.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006593 Hexokinase An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1. Hexokinase A,Hexokinase D,Hexokinase II
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000263 Adenylate Kinase An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC 2.7.4.3. Myokinase,AMP Kinase,ATP-AMP Phosphotransferase,ATP-AMP Transphosphorylase,Adenylokinase,ATP AMP Phosphotransferase,ATP AMP Transphosphorylase,Kinase, AMP,Kinase, Adenylate,Phosphotransferase, ATP-AMP,Transphosphorylase, ATP-AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F D Laterveer, and K Nicolay, and F N Gellerich
September 1972, Journal of neurochemistry,
F D Laterveer, and K Nicolay, and F N Gellerich
August 1995, Biochemical and molecular medicine,
F D Laterveer, and K Nicolay, and F N Gellerich
May 1995, Hepatology (Baltimore, Md.),
F D Laterveer, and K Nicolay, and F N Gellerich
March 1973, Biochemical and biophysical research communications,
F D Laterveer, and K Nicolay, and F N Gellerich
January 2017, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
F D Laterveer, and K Nicolay, and F N Gellerich
March 1976, Experientia,
F D Laterveer, and K Nicolay, and F N Gellerich
August 1985, Biochimica et biophysica acta,
Copied contents to your clipboard!