Vasopressin/oxytocin-related conopressin induces two separate pacemaker currents in an identified central neuron of Lymnaea stagnalis. 1997

P F van Soest, and K S Kits
Faculty of Biology, Graduate School Neurosciences Amsterdam, Research Institute Neurosciences, Vrije Universiteit, The Netherlands.

The molluscan vasopressin/oxytocin analogue Lys-conopressin excites neurons in the anterior lobe of the right cerebral ganglion of the snail Lymnaea stagnalis. Persistent inward currents that underlie the excitatory response were studied with the use of voltage-ramp protocols in the identified neuron RCB1 and other anterior lobe neurons. Under whole cell voltage-clamp conditions, two types of conopressin-activated current could be distinguished on the basis of their voltage dependence: 1) a pacemaker-like current that was activated at potentials above -40 mV (high-voltage-activated current, I(HVA)) and 2) an inward current that was activated at all potentials between -90 and +10 mV (low-voltage-activated current, I(LVA)). Ion substitution experiments indicate that sodium is the main charge carrier for I(HVA) and I(LVA). Both currents are differentially affected by cadmium. I(HVA) and I(LVA) differ in dose dependence, with median effective concentration values of 7.7 x 10(-8) M and 2.2 x 10(-7) M, respectively. Vasopressin and oxytocin act as weak agonists for the conopressin responses. The kinetics of desensitization and washout of I(HVA) and I(LVA) are different. The HVA response shows little desensitization, whereas the LVA response desensitizes within minutes (time constant 80 +/- 28 s, mean +/- SD). The time constant of washout on removal of conopressin is 159 +/- 63 s for I(HVA) and 36 +/- 13 s for I(LVA). These results suggest that two distinct conopressin receptors are involved in the activation of both currents. The conopressin-activated currents induce or enhance a region of negative slope resistance in the steady-state current-voltage relation. They differ from a third persistent inward current that is carried by calcium and completely blocked by cadmium. The presumed functional roles of these currents, possibly including autoregulation, are discussed.

UI MeSH Term Description Entries
D008195 Lymnaea A genus of dextrally coiled freshwater snails that includes some species of importance as intermediate hosts of parasitic flukes. Lymnea,Lymnaeas,Lymneas
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological

Related Publications

P F van Soest, and K S Kits
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
P F van Soest, and K S Kits
November 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
P F van Soest, and K S Kits
January 2005, Zhurnal evoliutsionnoi biokhimii i fiziologii,
P F van Soest, and K S Kits
January 1993, Acta biologica Hungarica,
Copied contents to your clipboard!