Neuropeptide Y suppresses epileptiform activity in rat hippocampus in vitro. 1997

G J Klapstein, and W F Colmers
Department of Pharmacology, University of Alberta, Edmonton, Canada.

Neuropeptide Y (NPY) potently inhibits glutamate-mediated synaptic transmission in areas CA1 and CA3 of the rat hippocampus without affecting other synaptic inputs onto principal cells of the hippocampal formation, suggesting that its biological role may include the regulation of excitability within the hippocampus. Here we examine NPY's actions in three in vitro models of epilepsy [0 Mg2+-, picrotoxin-, and stimulus-train-induced bursting (STIB)] with the use of extracellular and whole cell patch-clamp recordings from rat hippocampal-entorhinal cortex slices. Perfusion of the slice with saline that had Mg2+ omitted (0 Mg2+) or that had picrotoxin (100 microM) added resulted in brief spontaneous bursts (SBs) resembling interictal discharges. SB frequency is significantly reduced in both models by 1 microM NPY and by the Y2-preferring agonists peptide (P)YY(3-36) (1 microM) and 1-4-(6-aminohexanoic acid)-25-36 ([ahx(5-24)] NPY; 3 microM). The Y1-preferring agonist Leu31-Pro34NPY (1 microM) is considerably less potent, but also reduces burst frequency, even in the presence of the selective Y1 receptor antagonist GR231118, suggesting the involvement of a different receptor. In STIB, high-frequency stimulus trains to stratum radiatum of area CA2/CA3 result in clonic or tonic-clonic ictaform primary afterdischarges (primary ADs) as well as longer, spontaneous secondary ictaform discharges and SBs similar to those in the other models. Primary AD duration is greatly reduced or abolished by Y2- but not Y1-preferring agonists. SBs, although variable, were inhibited by both Y1 and Y2 agonists. In single and dual whole cell recordings from CA3 pyramidal cells, we frequently observed spontaneous, rhythmic synchronous events (SRSEs) arising after several STIB stimuli. Once established, SRSEs persist in the absence of further stimuli and are insensitive to the application of NPY. SRSEs in pyramidal cells typically occur at 2-4 Hz, are outward currents when cells are clamped near rest (>100 pA at a holding potential of -55 mV), reverse between -60 and -70 mV, and are inhibited by 100 microM picrotoxin, indicating involvement of gamma-aminobutyric acid-A receptors. They are inhibited by blockers of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) but not N-methyl-D-aspartate receptors. Whole cell patch-clamp recordings from interneurons in CA3 after STIB reveal NPY-insensitive, rhythmic, inward AMPA-receptor-mediated currents that are similar in frequency to SRSEs seen in pyramidal cells. We conclude that NPY, acting predominantly via Y2 receptors, can dramatically inhibit epileptiform activity in three fundamentally different in vitro models of epilepsy without affecting endogenous inhibitory activity. The results also provide support for the hypothesis that endogenous NPY may normally control excitability in the hippocampus and suggest the potential for NPY receptors as targets for anticonvulsant therapy.

UI MeSH Term Description Entries
D008275 Magnesium Deficiency A nutritional condition produced by a deficiency of magnesium in the diet, characterized by anorexia, nausea, vomiting, lethargy, and weakness. Symptoms are paresthesias, muscle cramps, irritability, decreased attention span, and mental confusion, possibly requiring months to appear. Deficiency of body magnesium can exist even when serum values are normal. In addition, magnesium deficiency may be organ-selective, since certain tissues become deficient before others. (Harrison's Principles of Internal Medicine, 12th ed, p1936) Deficiency, Magnesium,Deficiencies, Magnesium,Magnesium Deficiencies
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic

Related Publications

G J Klapstein, and W F Colmers
January 1995, Polish journal of pharmacology,
G J Klapstein, and W F Colmers
September 2005, Neuropharmacology,
G J Klapstein, and W F Colmers
November 2002, Neuroscience letters,
G J Klapstein, and W F Colmers
April 1987, European journal of pharmacology,
G J Klapstein, and W F Colmers
November 1987, Regulatory peptides,
G J Klapstein, and W F Colmers
January 2008, Medical principles and practice : international journal of the Kuwait University, Health Science Centre,
Copied contents to your clipboard!