Interaction of d-tubocurarine analogs with the mouse nicotinic acetylcholine receptor. Ligand orientation at the binding site. 1997

R V Papineni, and S E Pedersen
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.

The binding of d-tubocurarine and several of its analogs to the mouse nicotinic acetylcholine receptor (AChR) was measured by competition against the initial rate 125I-alpha-bungarotoxin binding to BC3H-1 cells. The changes in affinity due to methylation or halogenation at various functional groups on d-tubocurarine was measured to both the high affinity (alphagamma-site) and the low affinity site (alphadelta-site). We show that quaternization by methylation of the 2'-N ammonium group enhances the affinity for both the acetylcholine binding sites of mouse AChR, whereas this change does not affect affinity for the Torpedo AChR sites. The effect of N-methylation suggests the presence of interactions with the ammonium moiety that cannot be readily attributed to the known conserved residues thought to stabilize this functional group. Methylation of both the 7'- and 12'-phenols produced net affinity changes at both sites. The changes resulted from contributions at both the 7'- and the 12'-positions; however, these effects were dependent on whether the ammoniums were also methylated. Substitution of bromine or iodine at the 13'-position decreased the affinity considerably to the high affinity alphagamma-site of mouse AChR, whereas the affinity for the Torpedo alphagamma-site was slightly increased. Furthermore, binding to the mouse AChR was unaffected by the conformational state, whereas these ligands strongly preferred the desensitized conformation of the Torpedo AChR. Comparison of binding changes upon 13'-halogenation to the changes in amino acid residues at the ACh binding sites of the mouse and Torpedo AChR shows mouse residue Ile-gamma116 as likely to be involved in interacting with the 13'-position of d-tubocurarine. It is predicted that this residue is involved in the conformational equilibrium between the resting and desensitized conformations.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R V Papineni, and S E Pedersen
November 2002, The Journal of biological chemistry,
R V Papineni, and S E Pedersen
October 2002, Journal of molecular graphics & modelling,
R V Papineni, and S E Pedersen
March 1994, The American journal of physiology,
R V Papineni, and S E Pedersen
January 1998, Neuropharmacology,
R V Papineni, and S E Pedersen
September 1990, Proceedings. Biological sciences,
R V Papineni, and S E Pedersen
January 1982, The Journal of pharmacology and experimental therapeutics,
R V Papineni, and S E Pedersen
April 1990, Proceedings of the National Academy of Sciences of the United States of America,
R V Papineni, and S E Pedersen
March 1990, Biochemical and biophysical research communications,
Copied contents to your clipboard!