Human kidney free fatty acid and glucose uptake: evidence for a renal glucose-fatty acid cycle. 1997

C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
Department of Medicine, University of Rochester, School of Medicine, New York 14642, USA.

To determine the relationship between free fatty acids (FFA) and glucose uptake by the human kidney, 12 postabsorptive normal volunteers underwent renal vein catheterization and were infused to isotopic steady state with [6-3H]glucose and [9,10-3H]palmitate. Arterial and renal vein palmitate specific activities were not significantly different (3,533 +/- 219 vs. 3,549 +/- 220 dpm/mumol, P = 0.64). Palmitate renal fractional extraction and uptake determined isotopically (7.2 +/- 1.1% and 9.1 +/- 1.4 mumol/min) were not significantly different from those calculated by net balance measurements (8.3 +/- 1.2% and 9.7 +/- 1.2 mumol/min, P > 0.07 and P > 0.7, respectively). Renal palmitate uptake accounted for 8.7 +/- 1.3% of its systemic turnover. Renal linoleate and oleate fractional extraction calculated by net balance measurements (8.0 +/- 0.9 and 7.7 +/- 1.2%, respectively) were not significantly different from each other and that of palmitate (all P > 0.7). Renal uptake of palmitate, linoleate (7.9 +/- 1.0 mumol/min), and oleate (10.9 +/- 2.0 mumol/min) were all directly proportional to their arterial concentrations (r = 0.70, 0.68, and 0.63, respectively, all P < 0.025). Renal glucose uptake (93 +/- 10 mumol/min) accounted for 12.6 +/- 1.5% of its systemic turnover and was inversely related to the sum of palmitate, linoleate, and oleate uptake (r = -0.74, P < 0.01). These data indicate that in postabsorptive humans: 1) the kidney is an important site of FFA and glucose disposal, 2) a renal glucose-fatty acid cycle may exist, and 3) there appears to be little or no release into the circulation of stored renal FFA.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D008297 Male Males
D011865 Radioisotope Dilution Technique Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed) Radioisotope Dilution Technic,Dilution Technic, Radioisotope,Dilution Technics, Radioisotope,Dilution Technique, Radioisotope,Dilution Techniques, Radioisotope,Radioisotope Dilution Technics,Radioisotope Dilution Techniques,Technic, Radioisotope Dilution,Technics, Radioisotope Dilution,Technique, Radioisotope Dilution,Techniques, Radioisotope Dilution
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005260 Female Females

Related Publications

C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
March 1994, The American journal of physiology,
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
January 1966, The Proceedings of the Nutrition Society,
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
June 1992, The Journal of clinical investigation,
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
December 2003, Biochemical Society transactions,
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
August 1971, Lancet (London, England),
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
July 1973, Metabolism: clinical and experimental,
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
April 1973, Clinical science,
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
January 1972, Physiologia Bohemoslovaca,
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
November 2009, Biochemical and biophysical research communications,
C Meyer, and V Nadkarni, and M Stumvoll, and J Gerich
January 1993, Nutrition (Burbank, Los Angeles County, Calif.),
Copied contents to your clipboard!