Changes in gamma-glutamyltransferase activity in rat lung tissue, BAL, and type II cells after hyperoxia. 1997

R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
Laboratory of Pneumology, Katholieke Universiteit Leuven, Belgium.

The effect of hyperoxia on gamma-glutamyltransferase (gamma-GT), an important enzyme for the uptake of precursor molecules for intracellular synthesis of glutathione (GSH), has not been established. Our aim was to investigate the effects of prolonged subtoxic levels of hyperoxia on gamma-GT activity and GSH levels in lung tissue, epithelial lining fluid (ELF), and isolated rat type II cells immediately after their isolation and 48 h later when kept in culture in normoxia. Seventeen male Wistar rats were divided in three groups (n = 5-7) and were exposed to air or to 60 or 85% O2 for 7 days. Pulmonary gamma-GT activity increased in the 60 and 85% O2-exposed animals (1.6- and 3.2-fold, respectively), and tissue GSH levels increased only in the 60% O2 group (1.3-fold). In isolated type II cells from 60 and 85% O2-exposed animals, gamma-GT activity decreased by -70 and -88%, respectively, which was supported by cytochemical staining. Type II cell gamma-GT mRNA expression tended only to decrease after 85% O2. Type II cell gamma-GT activity strongly correlated with ELF gamma-GT (r = 0.60, P < 0.001), and ELF gamma-GT strongly correlated with ELF GSH (r = 0.75, P < 0.0001). When in culture, type II cell gamma-GT activity and GSH levels remained, respectively, 2.5- and 1.9-fold lower in the 60% O2-exposed group, but, in the 85% O2-exposed group, gamma-GT activity increased 2.1-fold, and GSH levels dropped to the levels of the control cells. Hyperoxia led to a concentration-dependent decrease in gamma-GT activity in rat type II cells, possibly by direct inactivation, but led to an increase in whole lung tissue gamma-GT. There seemed to be a negative feedback between intracellular GSH levels and type II cell gamma-GT activity. gamma-GT levels in the ELF were correlated with type II cell gamma-GT activity, but ELF gamma-GT did not seem to play an active role in the regulation of the ELF GSH pool. Hyperoxia decreased ELF GSH levels, possibly by increased degradation of GSH in the parenchymal lung tissue as a result of the increased gamma-GT activity.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
January 1997, Experimental lung research,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
April 1997, The international journal of biochemistry & cell biology,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
January 1987, Biology of the neonate,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
January 1997, Free radical biology & medicine,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
September 1995, Biochemical pharmacology,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
April 1997, The American journal of physiology,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
February 1983, Journal of the National Cancer Institute,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
January 1986, Experimental lung research,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
February 2008, European journal of clinical nutrition,
R J Van Klaveren, and D Dinsdale, and J L Pype, and M Demedts, and B Nemery
August 1979, Clinica chimica acta; international journal of clinical chemistry,
Copied contents to your clipboard!