Phosphodiesterase inhibition improves agonist-induced relaxation of hypertensive pulmonary arteries. 1997

R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202-5120, USA.

Pulmonary artery (PA) relaxation in response to vasodilators is significantly attenuated in models of hypoxia-induced pulmonary hypertension (HPH). The activity of phosphodiesterases (PDE) which hydrolyze vasodilatory second messengers may be increased by HPH, which thereby contributes to attenuated vasodilatory responses. The purpose of this study was to determine the effect of PDE inhibition on agonist-induced relaxation of PA from normal rats and rats with HPH (F(IO2), 0.1 for 14 days). Isolated PA rings were suspended in baths containing Krebs-Henseliet salt solution and contracted with U46619 in the presence or absence of a PDE3 (milrinone) or PDE4 (rolipram) inhibitor. Isoproterenol and forskolin induced concentration-dependent relaxation of PA rings from normal rats and rats with HPH, but the degree of relaxation was significantly less (*P < .05; n = 4) in PA from rats with HPH. Treatment with either PDE inhibitor significantly improved (*P < .05; n = 4) the magnitude of agonist-induced relaxation in PA rings from normal rats and rats with HPH. Additionally, PDE3A transcripts (8 and 10 kb) were increased (3.8 +/- 1.6-fold and 3.9 +/- 1.2-fold; n = 3, respectively) in PAs from rats with HPH compared with normal controls. These data show that inhibition of PDE3 and PDE4 activity can significantly improve PA relaxation in HPH and that expression of PDE3A mRNA is increased during HPH. These findings suggest that PDEs play an important role in the development and maintenance of HPH.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D008297 Male Males
D010726 Phosphodiesterase Inhibitors Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases. Phosphodiesterase Antagonists,Phosphodiesterase Inhibitor,Phosphoric Diester Hydrolase Inhibitors,Antiphosphodiesterases,Inhibitor, Phosphodiesterase
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D014664 Vasodilation The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE. Vasodilatation,Vasorelaxation,Vascular Endothelium-Dependent Relaxation,Endothelium-Dependent Relaxation, Vascular,Relaxation, Vascular Endothelium-Dependent,Vascular Endothelium Dependent Relaxation

Related Publications

R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
March 2001, American journal of physiology. Lung cellular and molecular physiology,
R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
January 2015, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
February 1989, Experientia,
R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
February 2010, The Journal of pharmacology and experimental therapeutics,
R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
January 2012, Circulation journal : official journal of the Japanese Circulation Society,
R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
September 2013, American journal of physiology. Lung cellular and molecular physiology,
R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
November 2003, Pflugers Archiv : European journal of physiology,
R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
September 2020, Purinergic signalling,
R S Wagner, and C J Smith, and A M Taylor, and R A Rhoades
March 2013, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!