Hyperproduction, purification, and mechanism of action of the cytotoxic enterotoxin produced by Aeromonas hydrophila. 1997

M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston 77555-1070, USA.

A gene encoding the cytotoxic enterotoxin (Act) from Aeromonas hydrophila was hyperexpressed with the pET, pTRX, and pGEX vector systems. Maximum toxin yield was obtained with the pTRX vector. Approximately 40 to 60% of Act was in a soluble form with the pTRX and pET vector systems. The toxin protein was purified to homogeneity by a combination of ammonium sulfate precipitation and fast protein liquid chromatography-based column chromatographies, including hydrophobic, anion-exchange, sizing, and hydroxylapatite chromatographies. Purified mature toxin migrated as a 52-kDa polypeptide on a sodium dodecyl sulfate (SDS)polyacrylamide gel that reacted with Act-specific antibodies in immunoblots. The minimal amount of toxin needed to cause fluid secretion in rat ileal loops was 200 ng, and the 50% lethal dose for mice was 27.5 ng when injected intravenously. Binding of the toxin to erythrocytes was temperature dependent, with no binding occurring at 4 degrees C. However, at 37 degrees C the toxin bound to erythrocytes within 1 to 2 min. It was determined that the mechanism of action of the toxin involved the formation of pores in erythrocyte membranes, and the diameter of the pores was estimated to be 1.14 to 2.8 nm, as determined by the use of saccharides of different sizes and by electron microscopy. Calcium chloride prevented lysis of erythrocytes by the toxin; however, it did not affect the binding and pore-forming capabilities of the toxin. A dose-dependent reduction in hemoglobin release from erythrocytes was observed when Act was preincubated with cholesterol, but not with myristylated cholesterol. With 14C-labeled cholesterol and gel filtration, the binding of cholesterol to Act was demonstrated. None of the other phospholipids and glycolipids tested reduced the hemolytic activity of Act. The toxin also appeared to undergo aggregation when preincubated with cholesterol, as determined by SDS-polyacrylamide gel electorphoresis. As a result of this aggregation, Act's capacity to form pores in the erythrocyte membrane was inhibited.

UI MeSH Term Description Entries
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D003603 Cytotoxins Substances that are toxic to cells; they may be involved in immunity or may be contained in venoms. These are distinguished from CYTOSTATIC AGENTS in degree of effect. Some of them are used as CYTOTOXIC ANTIBIOTICS. The mechanism of action of many of these are as ALKYLATING AGENTS or MITOSIS MODULATORS. Cytolysins,Cytotoxic Agent,Cytotoxic Agents,Cytotoxin,Agent, Cytotoxic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts

Related Publications

M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
February 1992, FEMS microbiology letters,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
July 1989, Canadian journal of microbiology,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
January 1969, The Biochemical journal,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
March 1979, Infection and immunity,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
January 1999, Infection and immunity,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
January 1998, Microbiology and immunology,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
April 2002, Microbial pathogenesis,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
December 1992, Wei sheng wu xue bao = Acta microbiologica Sinica,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
April 1976, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology,
M R Ferguson, and X J Xu, and C W Houston, and J W Peterson, and D H Coppenhaver, and V L Popov, and A K Chopra
September 2004, Infection and immunity,
Copied contents to your clipboard!