Dissimilar characteristics of N-methyl-N-nitrosourea-initiated foci and tumors promoted by dichloroacetic acid or trichloroacetic acid in the liver of female B6C3F1 mice. 1997

J R Latendresse, and M A Pereira
ManTech Environmental Technology, Toxicology Division, Armstrong Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.

Dichloroacetic acid (DCA) and trichloroacetic acid (TCA) are metabolites of the industrial solvent and environmental contaminant trichloroethylene (TCE), as well as contaminants of chlorinated drinking water. Human exposure to these chemicals is of concern as all three have been shown to increase liver tumor incidence in mice. Differences in dose-response curves, progression to cancer, and postexposure regression of lesions suggest that TCA and DCA work through different mechanisms. The purpose of this study was to further characterize the proliferative hepatocellular lesions promoted by TCA and DCA using biomarkers of cell growth, differentiation, and metabolism in liver sections to better delineate the distinctions in the mechanism of the two chloroacetates. Fifteen-day-old female mice were initiated with 25 mg/kg N-methyl-N-nitrosourea. The initiated mice were administered DCA or TCA (20.0 mmol/L) in drinking water from age 49 days until euthanasia at age 413 days. The pathologic assessment showed that the foci of altered hepatocytes and tumors occurring in the animals promoted with DCA were eosinophilic and positive immunohistochemically for TGF-alpha, c-jun, c-myc, CYP 2E1, CYP 4A1, and glutathione S-transferase-pi (GST-pi). The DCA lesions also were essentially negative for c-fos and TGF-beta, but nontumor hepatocytes were consistently TGF-beta-positive. In contrast, tumors promoted by TCA were predominantly basophilic, lacked GST-pi, and stained variably; usually, more than 50% of the tumor hepatocytes were essentially negative for the other biomarkers. This study demonstrates some striking differences in certain molecular biomarkers of cell growth, differentiation, and metabolism between DCA and TCA. The results also suggest some potential growth signal transduction pathways that may contribute to the DCA promotion of tumors, further support the premise that these two chloroacetates promote hepatocarcinogenesis in different ways, and provide a rational basis for a similar comparison with TCE. Such a comparison should give some insight as to whether DCA, TCA, or both are playing a significant role in the murine liver carcinogenesis of the parent compound, TCE.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008770 Methylnitrosourea A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties. Nitrosomethylurea,N-Methyl-N-nitrosourea,NSC-23909,N Methyl N nitrosourea,NSC 23909,NSC23909
D011230 Precancerous Conditions Pathological conditions that tend eventually to become malignant. Preneoplastic Conditions,Condition, Preneoplastic,Conditions, Preneoplastic,Preneoplastic Condition,Condition, Precancerous,Conditions, Precancerous,Precancerous Condition
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003999 Dichloroacetic Acid A derivative of ACETIC ACID that contains two CHLORINE atoms attached to its methyl group. Sodium Dichloroacetate,Bichloroacetic Acid,Potassium Dichloroacetate,Acid, Bichloroacetic,Acid, Dichloroacetic,Dichloroacetate, Potassium,Dichloroacetate, Sodium
D005260 Female Females
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J R Latendresse, and M A Pereira
June 1996, Fundamental and applied toxicology : official journal of the Society of Toxicology,
J R Latendresse, and M A Pereira
June 1998, Toxicological sciences : an official journal of the Society of Toxicology,
J R Latendresse, and M A Pereira
January 2001, Journal of biochemical and molecular toxicology,
Copied contents to your clipboard!