Autocrine activation of the IL-3/GM-CSF/IL-5 signaling pathway in leukemic cells. 1997

C C Paul, and S Mahrer, and K McMannama, and M A Baumann
Research Service, VA Medical Center, Wright State University, Dayton, Ohio 45428, USA.

The AML14.3D10 human myeloid leukemic cell line expresses receptors for granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-5 (IL-5), but not IL-3. We have found that this cell line produces GM-CSF in amounts up to 113 pg/ml in culture supernatants. Deprivation of endogenous GM-CSF by addition of neutralizing anti-GM-CSF antibody strongly inhibits proliferation of the cells, suggesting a GM-CSF autocrine growth mechanism. To examine whether endogenously produced GM-CSF activates intracellular GM-CSF/IL-3/IL-5-related signal transduction pathways, we performed antiphosphotyrosine immunoblotting of cell lysates of AML14.3D10 cells before and after deprivation of endogenous GM-CSF. We found constitutive tyrosine-phosphorylation of a number of proteins in AML14.3D10 that could not be detectably increased by the addition of exogenous GM-CSF, IL-3, or IL-5. However, GM-CSF-deprived cells demonstrated a marked increase in phosphorylation of proteins of identical molecular mass following addition of GM-CSF and IL-5, but not IL-3, consistent with the receptor expression of the cells and the known use of the same signaling pathways by the three cytokines. This suggests that AML14.3D10 cells use endogenously produced GM-CSF to activate signal transduction pathways, interfering with activation by exogenous cytokine until the endogenous stimulation is removed. We then assessed the activation of the beta-subunit common to the GM-CSF/IL-3/IL-5 receptors (beta c), JAK2 and p53/56 lyn, known to be involved in the common signaling pathways of the three cytokines. We found that phosphorylation of beta c and JAK2 in response to GM-CSF and IL-5 could be markedly enhanced by depriving cells of endogenous GM-CSF. Constitutive hyperphosphorylation of lyn was found in AML14.3D10 cells, and no further activation of lyn in response to cytokine was demonstrable in GM-CSF-deprived cells, suggesting that lyn is activated in this cell line by a mechanism other than GM-CSF. These studies represent the first demonstration of autocrine activation of intracellular cytokine signaling pathways by malignant hematopoietic cells. Because the addition of anti-GM-CSF to cell cultures improved responsiveness of intracellular signal transducing molecules to exogenous GM-CSF and IL-5, it can be inferred that endogenously produced GM-CSF exerts its effects by secretion and binding to surface GM-CSF receptors, although an intracellular component to signaling cannot be excluded. These observations provide further information regarding an autocrine contribution to leukemic cell growth, and establish a new model for study of these events.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015848 Interleukin-5 A cytokine that promotes differentiation and activation of EOSINOPHILS. It also triggers activated B-LYMPHOCYTES to differentiate into IMMUNOGLOBULIN-secreting cells. B-Cell Growth Factor-II,Eosinophil Differentiation Factor,IL-5,T-Cell Replacing Factor,BCGF-II,Differentiation Factor, Eosinophil,IL5,T-Cell-Replacing Factor,B Cell Growth Factor II,Interleukin 5,Replacing Factor, T-Cell,T Cell Replacing Factor
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor

Related Publications

C C Paul, and S Mahrer, and K McMannama, and M A Baumann
October 2003, The Journal of allergy and clinical immunology,
C C Paul, and S Mahrer, and K McMannama, and M A Baumann
January 1998, Stem cells (Dayton, Ohio),
C C Paul, and S Mahrer, and K McMannama, and M A Baumann
April 1999, Annals of the New York Academy of Sciences,
C C Paul, and S Mahrer, and K McMannama, and M A Baumann
December 1992, Immunology today,
C C Paul, and S Mahrer, and K McMannama, and M A Baumann
January 2006, Vitamins and hormones,
C C Paul, and S Mahrer, and K McMannama, and M A Baumann
May 1992, International journal of cell cloning,
C C Paul, and S Mahrer, and K McMannama, and M A Baumann
November 2012, Immunological reviews,
C C Paul, and S Mahrer, and K McMannama, and M A Baumann
March 1997, [Rinsho ketsueki] The Japanese journal of clinical hematology,
C C Paul, and S Mahrer, and K McMannama, and M A Baumann
April 1997, Leukemia,
Copied contents to your clipboard!