Absolute configuration of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol formed metabolically from 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. 1997

S S Hecht, and T E Spratt, and N Trushin
University of Minnesota Cancer Center, Minneapolis 55455, USA.

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is an important metabolite of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Using the chiral derivatizing agent, (R)-(+)-alpha-methylbenzyl isocyanate [(R)-(+)-MBIC], previous work has shown that the enantiomeric ratio of metabolically formed NNAL and its glucuronide derivative may be species dependent. However, the absolute configuration of such NNAL has not been previously reported. Synthetically prepared racemic NNAL was converted to diastereomeric esters by reaction with (R)-(+)- and (S)-(-)-alpha-methoxy-alpha-(trifluoromethyl)phenylacetic acid (MTPA) chloride (Mosher's reagent) and the products were characterized by 1H-NMR. Based on chemical shift data, the absolute configuration of NNAL in each diastereomeric ester was assigned. Hydrolysis of (R)-NNAL-(R)-MTPA gave (R)-NNAL. This was converted to the corresponding carbamate by reaction with (R)-(+)-alpha-MBIC and the absolute configurations of the diastereomeric carbamates formed by reaction of (R)- and (S)-NNAL with (R)-(+)-MBIC were thereby assigned. Conversion of metabolically produced NNAL to the same carbamates allowed us to assign the NNAL formed from NNK by rat liver microsomes as (R)-NNAL. The major and minor NNAL-glucuronide diastereomers found in the urine of patas monkeys and humans exposed to NNK were similarly assigned; they were formed from (R)-NNAL and (S)-NNAL, respectively.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009602 Nitrosamines A class of compounds that contain a -NH2 and a -NO radical. Many members of this group have carcinogenic and mutagenic properties. Nitrosamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S S Hecht, and T E Spratt, and N Trushin
September 1985, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans,
Copied contents to your clipboard!