Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. 1997

H Yamazaki, and T Shimada
Osaka Prefectural Institute of Public Health, Nakamichi, Japan.

Roles of human cytochrome P450 (P450 or CYP) 2C9, 2C19, and 3A4 in the oxidation of progesterone and testosterone were studied in recombinant P450 enzymes and in human liver microsomes. In vitro inhibition experiments showed that progesterone and its 17alpha- and 21-hydroxylated metabolites and 11-deoxycortisol suppressed the CYP2C19-dependent R-warfarin 7-hydroxylation activities, with progesterone being the most active. These steroid chemicals also inhibited CYP2C9-dependent S-warfarin 7-hydroxylation activities though lesser extents seen with those in CYP2C19 enzyme. Progesterone was found to be a competitive inhibitor of CYP2C19 and CYP2C9 in human liver microsomes. Recombinant CYP2C19 catalyzed progesterone to form 21-hydroxyprogesterone as a major product and 16alpha- and 17alpha-hydroxyprogesterone as minor products. CYP2C9 also had progesterone 21-hydroxylation activities, although the activities were lower than those catalyzed by CYP2C19. Vmax/Km ratios for the progesterone 21-hydroxylation activity of CYP2C19 were determined to be 13- and 32-fold higher than those of CYP2C9 and 3A4, respectively. CYP3A4 oxidized progesterone to form 16alpha-, 6beta-, and 2beta-hydroxyprogesterone as major products and 21-hydroxyprogesterone as a minor product, but did not produce detectable levels of 17alpha-hydroxyprogesterone. Immunoinhibition experiments suggested that anti-CYP2C9 (which inhibits both CYP2C9 and CYP2C19 catalytic activities) suppressed the progesterone 21-hydroxylation activities catalyzed by liver microsomes of humans and monkeys and that anti-CYP2C11 inhibited the progesterone 21-hydroxylation activities catalyzed by liver microsomes of male rats. CYP2C19 was also found to oxidize testosterone at 17-position to form androstenedione. Androstenedione formation catalyzed by liver microsomes of humans and monkeys and of male rats was suppressed by anti-CYP2C9 and anti-CYP2C11, respectively. These results suggest that CYP2C19 plays important roles in the oxidation of progesterone and testosterone in human liver microsomes, although the physiological significance of these metabolic pathways remains unclear. CYP2C9 may have some, but lesser extent than those by CYP2C19, of the catalytic roles for the metabolism of progesterone and testosterone by human liver microsomes.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

H Yamazaki, and T Shimada
November 2000, Drug metabolism and disposition: the biological fate of chemicals,
H Yamazaki, and T Shimada
August 2018, Xenobiotica; the fate of foreign compounds in biological systems,
H Yamazaki, and T Shimada
July 2007, Journal of medicinal chemistry,
H Yamazaki, and T Shimada
October 2004, European journal of biochemistry,
H Yamazaki, and T Shimada
May 2004, European journal of clinical pharmacology,
H Yamazaki, and T Shimada
November 2001, Drug metabolism and disposition: the biological fate of chemicals,
H Yamazaki, and T Shimada
July 2024, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society,
H Yamazaki, and T Shimada
June 2005, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!