Influence of the frequency of nerve stimulation on the metabolism of 3H-norepinephrine released from the perfused cat spleen: differences observed during and after the period of stimulation. 1976

M L Dubocovich, and S Z Langer

The metabolism of 3H-norepinephrine (3H-NE) released by different frequencies of nerve stimulation was studied in the perfused cat spleen after labeling the endogenous stores with (-)-3H-NE. For a wide range of frequencies of stimulation, unmetabolized 3H-NE represented between 50 and 60% of the total increase in outflow of radioactivity elicited by nerve stimulation. The deaminated glycol, 3,4-dihydroxyphenylglycol (3H-DOPEG), was the main metabolite of 3H-NE released by nerve stimulation. When the increase in outflow of radioactivity was analyzed for the samples collected during nerve stimulation, there was a progressive decrease in the fraction of 3H-NE released which was collected as 3H-metabolites as the frequency of stimulation was increased from 0.5 to 5 Hz. For the samples collected in the poststimulation period, there was no frequency dependence in the metabolism of the released transmitter: approximately 75% of the total overflow of radioactivity was accounted for by the 3H-NE metabolites, particularly 3H-DOPEG. The time course of the metabolism of 3H-NE released by nerve stimulation revealed that 3H-DOPEG formation was rather small during stimulation and that it increased sharply in the poststimulation samples. The selective increase in 3H-DOPEG formation in the poststimulation period is compatible with the view that neuronal uptake of the released transmitter might be increased immediately after nerve stimulation. Inhibition of neuronal uptake by cocaine or by phenoxybenzamine prevented 3H-DOPEG formation from 3H-NE released by nerve stimulation. Yet, in the presence of cocaine, the fractional release of total radioactivity per shock was not increased at either 1, 5 or 30 Hz. These results support the view that a large fraction of the 3H-NE released by stimulation which is recaptured by nerve endings is metabolized to 3H-DOPEG rather than stored for subsequent reuse. The extensive conversion to 3H-DOPEG of 3H-NE released by nerve stimulation suggests that there may be a difference between the process of neuronal uptake under resting conditions and that which operates under conditions of nerve stimulation. This difference may be related to the concentration of the transmitter achieved in the synaptic gap in each experimental condition. Under resting conditions and during perfusion with low concentrations of NE, neuronal uptake in the perfused cat spleen is coupled with vesicular storage. On the other hand, when the extracellular concentration of NE is increased as a result of nerve stimulation, neuronal uptake of NE appears to be coupled with presynaptic metabolism through monoamine oxidase and aldehyde reductase.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M L Dubocovich, and S Z Langer
November 1970, The Journal of pharmacology and experimental therapeutics,
M L Dubocovich, and S Z Langer
March 1971, Archives internationales de pharmacodynamie et de therapie,
M L Dubocovich, and S Z Langer
January 1972, European journal of pharmacology,
M L Dubocovich, and S Z Langer
June 1968, The Journal of pharmacology and experimental therapeutics,
M L Dubocovich, and S Z Langer
November 1977, The Journal of physiology,
Copied contents to your clipboard!