Co-ordinated control of apical calcium influx and basolateral calcium efflux in rabbit cortical collecting system. 1997

G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
Department of Cell Physiology, University of Nijmegen, The Netherlands.

Transcellular Ca2+ transport in the distal nephron involves passive Ca2+ influx at the apical membrane, diffusion through the cytosol and active extrusion across the opposing basolateral membrane. The molecular identity of the apical Ca2+ entry step is still elusive, but its regulatory aspects have been analyzed in the present study. To this end, rabbit connecting and cortical collecting tubular cells were cultured on permeable and transparent supports and the apical Ca2+ influx was deduced from Mn2+ quenching of Ca2+ independent Fura-2 fluorescence, while the intracellular Ca2+ concentration ([Ca2+]i) was measured simultaneously. In parallel experiments, transcellular Ca2+ transport was determined isotopically as 45Ca2+ flux from the apical to basolateral compartment. Decreasing the apical pH from 7.4 to 5.9 inhibited transcellular Ca2+ transport by 53 +/- 1%, whereas apical Ca2+ influx was reduced by 39 +/- 7% and [Ca2+]i decreased by 18 +/- 3%. Reversal of the Na+/Ca2+ exchanger by iso-osmotic replacement of Na+ by N-methyl-D-glucamine in the basolateral compartment resulted in 50 +/- 5% inhibition of Ca2+ transport, 46 +/- 3% reduction of apical Ca2+ influx and 60 +/- 3% increase in [Ca2+]i. In the absence of basolateral Ca2+, however, this manoeuvre decreased [Ca2+]i by 21 +/- 8%, while Ca2+ transport and apical Ca2+ influx were reduced by the same magnitude as in the presence of Ca2+, that is by 53 +/- 6% and 45 +/- 4%, respectively. Stimulation of adenylyl cyclase with forskolin (10(-5) M) increased transcellular Ca2+ transport by 108 +/- 40%, stimulated apical Ca2+ influx by 120 +/- 17% and increased [Ca2+]i by 110 +/- 2%. In conclusion, the apical Ca2+ influx is regulated by apical pH, intracellular cAMP and basolateral Na+/Ca2+ exchanger activity, and is coupled in an 1:1 fashion to the rate of transepithelial Ca2+ transport.

UI MeSH Term Description Entries
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D016257 Fura-2 A fluorescent calcium chelating agent which is used to study intracellular calcium in tissues. Fura 2
D017136 Ion Transport The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions. Antiport,Ion Cotransport,Ion Exchange, Intracellular,Symport,Uniport,Active Ion Transport,Facilitated Ion Transport,Passive Ion Transport,Cotransport, Ion,Exchange, Intracellular Ion,Intracellular Ion Exchange,Ion Transport, Active,Ion Transport, Facilitated,Ion Transport, Passive,Transport, Active Ion,Transport, Ion
D018929 Cell Culture Techniques Methods for maintaining or growing CELLS in vitro. Cell Culture,Cell Culture Technique,Cell Cultures,Culture Technique, Cell,Culture Techniques, Cell

Related Publications

G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
April 1994, The American journal of physiology,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
January 1999, The American journal of physiology,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
December 1985, The Journal of general physiology,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
January 1995, The American journal of physiology,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
October 1993, The American journal of physiology,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
November 1996, The Journal of physiology,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
October 1992, The Journal of clinical investigation,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
April 1998, The American journal of physiology,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
July 1984, Proceedings of the National Academy of Sciences of the United States of America,
G Raber, and P H Willems, and F Lang, and R Nitschke, and C H van Os, and R J Bindels
January 1987, The American journal of physiology,
Copied contents to your clipboard!