| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D008566 |
Membranes |
Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. |
Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane |
|
| D008767 |
Methylmercury Compounds |
Organic compounds in which mercury is attached to a methyl group. |
Methyl Mercury Compounds,Compounds, Methyl Mercury,Compounds, Methylmercury,Mercury Compounds, Methyl |
|
| D004305 |
Dose-Response Relationship, Drug |
The relationship between the dose of an administered drug and the response of the organism to the drug. |
Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response |
|
| D004553 |
Electric Conductivity |
The ability of a substrate to allow the passage of ELECTRONS. |
Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical |
|
| D000200 |
Action Potentials |
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. |
Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D001369 |
Axons |
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. |
Axon |
|
| D012964 |
Sodium |
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. |
Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23 |
|
| D049832 |
Decapodiformes |
A superorder of CEPHALOPODS comprised of squid, cuttlefish, and their relatives. Their distinguishing feature is the modification of their fourth pair of arms into tentacles, resulting in 10 limbs. |
Cuttlefish,Illex,Sepiidae,Squid,Todarodes,Cuttlefishs,Decapodiforme,Illices,Squids,Todarode |
|