Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins. 1997

M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
School of Food and Nutritional Sciences, University of Shizuoka, Japan.

Theaflavin and theaflavin digallate, which are components of black tea were examined by in vitro invasion assay with mouse Lewis lung carcinoma LL2-Lu3 cells, which are highly metastatic. The compounds inhibited invasion by the tumor cells. Gelatin zymography showed that the cells secreted matrix metalloproteinases (MMPs), probably including MMP-2 and MMP-9, which may be involved in tumor cell invasion and metastasis. Theaflavin and theaflavin digallate also inhibited MMPs from the culture medium of these tumor cells, as did (-)-epigallocatechin gallate. These results suggest that theaflavin, theaflavin digallate, and (-)-epigallocatechin gallate inhibit tumor cell invasion by inhibiting type IV collagenases of the LL2-Lu3 cells.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D002277 Carcinoma A malignant neoplasm made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. It is a histological type of neoplasm and not a synonym for "cancer." Carcinoma, Anaplastic,Carcinoma, Spindle-Cell,Carcinoma, Undifferentiated,Carcinomatosis,Epithelial Neoplasms, Malignant,Epithelioma,Epithelial Tumors, Malignant,Malignant Epithelial Neoplasms,Neoplasms, Malignant Epithelial,Anaplastic Carcinoma,Anaplastic Carcinomas,Carcinoma, Spindle Cell,Carcinomas,Carcinomatoses,Epithelial Neoplasm, Malignant,Epithelial Tumor, Malignant,Epitheliomas,Malignant Epithelial Neoplasm,Malignant Epithelial Tumor,Malignant Epithelial Tumors,Neoplasm, Malignant Epithelial,Spindle-Cell Carcinoma,Spindle-Cell Carcinomas,Tumor, Malignant Epithelial,Undifferentiated Carcinoma,Undifferentiated Carcinomas
D002392 Catechin An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechinic Acid,Catechuic Acid,(+)-Catechin,(+)-Cyanidanol,(+)-Cyanidanol-3,(-)-Epicatechin,(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-chromanetriol,2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-cis)-,3,3',4',5,7-Flavanpentol,Catergen,Cianidanol,Cyanidanol-3,Epicatechin,KB-53,Z 7300,Zyma,Cyanidanol 3,KB 53,KB53
D005707 Gallic Acid A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. 3,4,5-Trihydroxybenzoic Acid,Acid, Gallic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013662 Tea The infusion of leaves of CAMELLIA SINENSIS (formerly Thea sinensis) as a beverage, the familiar Asian tea, which contains CATECHIN (especially epigallocatechin gallate) and CAFFEINE. Black Tea,Green Tea,Black Teas,Green Teas,Tea, Black,Tea, Green,Teas, Black,Teas, Green
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical
D044946 Biflavonoids Dimers (homo and hetero) of FLAVONOIDS. Biflavonoid

Related Publications

M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
September 2007, Bioscience, biotechnology, and biochemistry,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
September 2001, The Journal of nutrition,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
March 2000, Biochimica et biophysica acta,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
January 2009, Chemotherapy,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
July 2000, Molecular carcinogenesis,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
April 2003, Antiviral research,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
November 2016, Journal of pharmaceutical and biomedical analysis,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
December 2014, Nutrients,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
January 2013, PloS one,
M Sazuka, and H Imazawa, and Y Shoji, and T Mita, and Y Hara, and M Isemura
October 2008, Phytochemistry,
Copied contents to your clipboard!