Effects of single-residue substitutions on negative cooperativity in ligand binding to dihydrofolate reductase. 1997

J Basran, and M G Casarotto, and A Basran, and G C Roberts
Biological NMR Centre and Department of Biochemistry, University of Leicester, UK.

The effects of six amino acid substitutions in Lactobacillus casei dihydrofolate reductase, predominantly in the coenzyme binding site, on catalysis and on the negative cooperativity between NADPH and tetrahydrofolate binding have been determined. Replacement of Leu62, His64 or Leu54 by alanine has no effect on kcat, and produces only modest changes in negative cooperativity. Alanine substitution of His77, which interacts indirectly with the coenzyme adenine ring, leads to a doubling of the negative cooperativity and a consequent doubling of kcat. Replacement of Arg43, which interacts with the coenzyme 2'-phosphate, by alanine, or of Trp21, which interacts with the coenzyme nicotinamide ring, by histidine leads to a 20-100-fold decrease in negative cooperativity. In both mutants there is a decrease in kcat; isotope effects show that product release is largely rate-limiting in R43A, whereas in W21H hydride ion transfer is rate-limiting. 1H NMR has been used to obtain information on the extent of the structural changes produced by the substitutions. This varies from very local effects in H64A to very widespread effects in W21H. These changes are used as the basis for discussion of the mechanisms of the functional effects of the various substitutions. It is suggested that residues in helix C, beta-strand 3 and the beta3-beta4 loop may be involved in the transmission of effects between the coenzyme and substrate binding sites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007780 Lacticaseibacillus casei A rod-shaped bacterium isolated from milk and cheese, dairy products and dairy environments, sour dough, cow dung, silage, and human mouth, human intestinal contents and stools, and the human vagina. L. casei is CATALASE positive. Lactobacillus casei
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013762 Tetrahydrofolate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 7,8-dihyrofolate and NADPH to yield 5,6,7,8-tetrahydrofolate and NADPH+, producing reduced folate for amino acid metabolism, purine ring synthesis, and the formation of deoxythymidine monophosphate. Methotrexate and other folic acid antagonists used as chemotherapeutic drugs act by inhibiting this enzyme. (Dorland, 27th ed) EC 1.5.1.3. Dihydrofolate Dehydrogenase,Dihydrofolate Reductase,Folic Acid Reductase,Acid Reductase, Folic,Dehydrogenase, Dihydrofolate,Dehydrogenase, Tetrahydrofolate,Reductase, Dihydrofolate,Reductase, Folic Acid

Related Publications

J Basran, and M G Casarotto, and A Basran, and G C Roberts
May 1978, Biochemistry,
J Basran, and M G Casarotto, and A Basran, and G C Roberts
December 1981, Biochemistry,
J Basran, and M G Casarotto, and A Basran, and G C Roberts
January 2000, Angewandte Chemie (International ed. in English),
J Basran, and M G Casarotto, and A Basran, and G C Roberts
March 1977, British journal of pharmacology,
J Basran, and M G Casarotto, and A Basran, and G C Roberts
October 2021, ACS omega,
J Basran, and M G Casarotto, and A Basran, and G C Roberts
June 2004, Journal of biochemistry,
J Basran, and M G Casarotto, and A Basran, and G C Roberts
October 1982, Biochemical Society transactions,
J Basran, and M G Casarotto, and A Basran, and G C Roberts
September 2005, Biochemistry,
J Basran, and M G Casarotto, and A Basran, and G C Roberts
March 2005, Journal of computer-aided molecular design,
Copied contents to your clipboard!