Further characterization of negative regulatory element involved in the hormonal regulation of GlcNAc-1-P transferase gene in mouse mammary gland. 1997

J Ma, and H Saito, and T Oka, and I K Vijay
Department of Animal Sciences, University of Maryland, College Park 20742, USA.

The gene encoding UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1-phosphate transferase (GPT), the enzyme that initiates the pathway for the biosynthesis of asparagine-linked glycoproteins, is ubiquitously expressed in eukaryotic cells. However, its expression in the mammary gland is developmentally and hormonally regulated; transcription of the mouse mammary GPT gene is stimulated by the lactogenic hormones, insulin, glucocorticoid, and prolactin. Earlier, we demonstrated that a distal negative regulatory element in mouse GPT (mGPT) promoter plays an important role in developmental and hormonal control of mGPT gene expression in mammary gland (Ma J, Saito H, Oka T and Vijay IK (1996) J Biol Chem, in press). In this report, a tissue distribution of the repressor that binds the negative regulatory element was examined; a comparison of the negative regulatory element to other consensus sequences for known transcription factors is discussed.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D005260 Female Females
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J Ma, and H Saito, and T Oka, and I K Vijay
June 1994, The Journal of biological chemistry,
J Ma, and H Saito, and T Oka, and I K Vijay
February 2001, Molecular and cellular endocrinology,
J Ma, and H Saito, and T Oka, and I K Vijay
September 1994, Differentiation; research in biological diversity,
J Ma, and H Saito, and T Oka, and I K Vijay
October 2002, DNA sequence : the journal of DNA sequencing and mapping,
J Ma, and H Saito, and T Oka, and I K Vijay
April 1994, The Journal of biological chemistry,
J Ma, and H Saito, and T Oka, and I K Vijay
December 1986, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J Ma, and H Saito, and T Oka, and I K Vijay
March 1953, Klinische Medizin; osterreichische Zeitschrift fur wissenschaftliche und praktische Medizin,
J Ma, and H Saito, and T Oka, and I K Vijay
July 1971, The Journal of experimental zoology,
J Ma, and H Saito, and T Oka, and I K Vijay
June 1969, The Biochemical journal,
J Ma, and H Saito, and T Oka, and I K Vijay
June 1988, Archivos de biologia y medicina experimentales,
Copied contents to your clipboard!